ΔΙΠΛΩΜΑΤΙΚΗ ΔΙΑΤΡΙΒΗ

ΦΥΣΙΚΕΣ ΚΑΤΑΣΤΡΟΦΕΣ ΣΤΟΝ ΕΛΛΑΔΙΚΟ ΧΩΡΟ (ΣΕΙΣΜΟΙ – ΠΥΡΚΑΓΙΕΣ), Η ΓΕΩΓΡΑΦΙΚΗ ΚΑΤΑΝΟΜΗ ΤΟΥΣ ΚΑΙ ΟΙ ΕΠΙΠΤΩΣΕΙΣ ΤΟΥΣ ΣΤΟ ΦΥΣΙΚΟ ΚΑΙ ΑΝΘΡΩΠΟΓΕΝΕΣ ΠΕΡΙΒΑΛΛΟΝ

ΟΝΟΜΑ ΦΟΙΤΗΤΗ: ΑΓΟΥΡΟΓΙΑΝΝΗΣ ΠΑΝΑΓΙΩΤΗΣ

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗ: ΣΟΥΛΑΚΕΛΛΗΣ ΝΙΚΟΛΑΟΣ

ΜΥΤΙΛΗΝΗ, 2011
ΠΕΡΙΛΗΨΗ...4
ΕΙΣΑΓΩΓΗ ..5
1. ΠΥΡΚΑΓΙΕΣ ...11
 1.1. Πρόλογος ...11
 1.2. Κατηγορίες Πυρκαγιών ...11
 1.2.1. Δασικές Πυρκαγιές ...12
 1.2.2. Αστικές Πυρκαγιές ...13
 1.2.3. Περιαστικές Πυρκαγιές13
 1.3. Τα κυρίωτερα αίτια εκδήλωσης πυρκαγιών στην Ελλάδα15
 1.4. Επιπτώσεις Δασικών πυρκαγιών17
 1.5. Διαχείριση Πυρκαγιών ..20
 1.5.1. Στρατηγική αντιτυπικής διαχείρισης20
 1.5.2. Επιχειρησιακός σχεδιασμός σύμφωνα με το σχέδιο <<Ξενοκράτης>> ...23
2. ΣΕΙΣΜΟΙ ...25
 2.1. Χρήσιμες Έννοιες – Ορισμοί25
 2.2. Αίτια γένεσης των Σεισμών ...31
 2.3. Γεωμορφολογικές και Γεωφυσικές ιδιότητες του ελληνικού χώρου ...35
 2.4. Διαχείριση και Αντιμετώπιση Σεισμών38
 2.4.1. Αντισεισμικός και Πολεοδομικός Σχεδιασμός39
 2.4.2. Σχεδιασμός Πρόληψης ...39
 2.4.3. Αντισεισμικός Κανονισμός40
 2.4.4. Χώροι Καταφυγής ..42
 2.4.5. Σχεδιασμός Έκτακτης Ανάγκης (Ετοιμότητας – Ανακούφισης) ...43
2.4.6. Σχεδιασμός Αποκατάστασης – Ανασυγκρότησης ... 43
2.5. Αποτελέσματα του σεισμού στον ίδιο τον άνθρωπο .. 45
2.5.1. Τα αποτελέσματα του σεισμού στα έργα του ανθρώπου ... 48
2.6. Οι οικονομικές συνέπειες ... 51
3. ΧΑΡΤΟΓΡΑΦΙΑ ΚΑΙ ΦΥΣΙΚΕΣ ΚΑΤΑΣΤΡΟΦΕΣ ... 53
3.1. Ιστορική εξέλιξη της Χαρτογραφίας ... 54
3.2. Γεωγραφικά Συστήματα Πληροφοριών .. 56
4. ΠΕΡΙΟΧΗ ΜΕΛΕΣΗΣ .. 58
4.1. Γεωγραφία .. 58
4.2. Κλίμα .. 59
5. ΜΕΘΟΔΟΛΟΓΙΑ - ΣΥΝΟΛΗ ΔΕΔΟΜΕΝΩΝ .. 63
6. ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ... 64
6.1. Δημιουργία χαρτών με τους σημαντικότερους σεισμούς ... 64
6.2. Δημιουργία χαρτών με τις σημαντικότερες πυρκαγιές .. 65
7. ΑΠΟΤΕΛΕΣΜΑΤΑ ... 69
7.1. Χάρτες Σεισμών .. 70
7.2. Χάρτες Πυρκαγιών .. 77
8. ΣΥΜΠΕΡΑΣΜΑΤΑ ... 81
8.1. Σεισμοί .. 81
8.2. Πυρκαγιές .. 82
ΒΙΒΛΙΟΓΡΑΦΙΑ .. 85
ΠΑΡΑΡΤΗΜΑ 1 ΠΙΝΑΚΕΣ ... 87
ΣΗΜΑΝΤΙΚΟΤΕΡΕΣ ΠΥΡΚΑΓΙΕΣ 2005-2010 ... 90
ΠΑΡΑΡΤΗΜΑ-2 ΕΙΚΟΝΕΣ ... 98
ΠΕΡΙΛΗΨΗ

Για την υλοποίηση των στόχων μας χρησιμοποιήσαμε δεδομένα που μας παραχωρήθηκαν από το Εργαστήριο Χαρτογραφίας και Γεωπληθορικής και από το Εργαστήριο Γεωγραφίας των Φυσικών Καταστροφών, του τμήματος Γεωγραφίας του Πανεπιστημίου Αιγαίου. Η επεξεργασία των δεδομένων έγινε με την χρήση των υπολογιστικών προγραμμάτων ArcGis 9.3 και Google Earth.
ΕΙΣΑΓΩΓΗ

Ως φυσικό κίνδυνο (natural hazard) ορίζουμε κάθε φυσικό φαινόμενο ή διαδικασία που έχει κάποια πιθανότητα να προκαλέσει μικρής ή μεγάλης κλίμακας καταστροφής στο δομημένο και φυσικό περιβάλλον. Αποτέλεσμα του φυσικού κινδύνου είναι οι φυσικές καταστροφές, οι οποίες περνάνε από το στάδιο της πιθανότητας σε μία ενεργή φάση και κατά συνέπεια έχουν επιπτώσεις στις ανθρώπινες δραστηριότητες.

Ο χώρος και ο χρόνος αποτελούν σημαντικούς παράγοντες σε μια φυσική καταστροφή. Ο χρόνος, ως γραμμική συνάρτηση, αποτελεί την σπονδυλική στήλη για τα περισσότερα μοντέλα που εξετάζουν τον μηχανισμό με τον οποίο λαμβάνουν χώρα οι καταστροφές ή τον τρόπο με τον οποίο αυτές μπορούν να ελεγχθούν. Ο χώρος σχετίζεται με την τροχότητα και την επιδεκτικότητα σε καταστροφές καθώς και τις συνέπειες από ένα γεγονός, ενώ αποτελεί άμεση συνάρτηση με το χρόνο. (Ευθ. Λ. Λέκκας, 2000)

Οι φυσικές καταστροφές διακρίνονται σε:

- Σεισμοίς
- Κατολισθήσεις και καθιζήσεις
- Δασικές πυρκαγιές
- Πλημμύρες
- Έντονα καιρικά φαινόμενα
- Ηφαίστεια
- Κλιματικές αλλαγές
Άλλη κατηγορία καταστροφών είναι οι ανθρωπογενείς ή τεχνολογικές καταστροφές στις οποίες ανήκουν:

- Τεχνολογικά ατυχήματα
- Ατμοσφαιρική ρύπανση
- Ρύπανση εδάφους
- Ρύπανση υδάτων
- Φράγματα
- ΧΒΡΠ συμβάντα

Τέλος έχουμε και τις φυσικοτεχνολογικές καταστροφές ή αλλιώς φαινόμενο NA-ΤΕΕΚ. Η ομάδα αυτή καταστροφών περιλαμβάνει κινδύνους που είναι συνδεδεμένοι με φυσικές διαδικασίες, αλλά η αρχική τους προέλευση αποδίδεται σε τεχνολογική δραστηριότητα, ή αντιστρόφως. (Παπαδόπουλος 2000)

Συνηθισμένες περιπτώσεις Na-Teck είναι αυτές που προκύπτουν, όταν εξαιτίας κάποιου φυσικού φαινομένου π.χ. μεγάλου σεισμού, διαφεύγουν επικίνδυνες χημικές ή ραδιενεργές ουσίες. Χαρακτηριστικό παράδειγμα, το πυρηνικό ατύχημα που προκλήθηκε στο εργοστάσιο παραγωγής ηλεκτρικής ενέργεια στη Φουκουσίμα της Ιαπωνίας μετά από σεισμό 8,9 βαθμών της κλίμακας Ρίχτερ και την δημιουργία καταστροφικού τσουνάμι.

Στην Ελλάδα οι πιο συνηθισμένοι φυσικοί κίνδυνοι συνοδεύονται με φαινόμενα όπως:

- Σεισμούς και συνοδά φαινόμενα όπως ρευστοποίηση, κατολισθήσεις και καταβυθίσεις εδαφών, καταπτώσεις βράχων.
• Δασικές πυρκαγιές, οι οποίες εμφανίζονται κυρίως τους θερινούς μήνες λόγω των συνθηκών που επικρατούν (παρατεταμένο και ξηρό καλοκαίρι, δυνατοί άνεμοι, έντονο ανάγλυφο των δασικών εδαφών και έντονη ξυροφυτική βλάστηση που σε συνδυασμό με την ανθρώπινη δραστηριότητα δημιουργούν ένα περιβάλλον κατάλληλο και πολύ επικίνδυνο για την εκδήλωση πυρκαγιών).

• Πλημμύρες

Με λιγότερη συχνότητα εμφανίζονται φαινόμενα όπως χιονοπτώσεις, καύσωνες, κατολίσθησεις, τσουνάμι και σχεδόν καθόλου ημαστασιακές εκρήξεις.

Εκτακτη Ανάγκη – Σχεδιασμός Πολιτικής Προστασίας

Έκτακτη ανάγκη είναι η κατάσταση στην οποία κηρύσσεται μια περιοχή ή ολόκληρος ο Νομός, από κάθε αιφνιδιαστική μεταβολή που προκαλείται από φυσικά φαινόμενα, τεχνολογικά ατυχήματα και καταστροφές που δεν είναι δυνατόν να αντιμετωπισθεί με τα υπάρχοντα μέσα του Νομού και απειλούνται με την επέκτασή τους ανθρώπινες ζωές ή εκτεταμένες καταστροφές σε αγαθά, υλικά και ευαίσθητες εγκαταστάσεις.

Η πολιτική προστασία (civil protection) αναφέρεται στο σύνολο των δράσεων των οποίων ένα κράτος σχεδιάζει, οργανώνει και εφαρμόζει για να προλαμβάνει και να αντιμετωπίζει τους φυσικούς και τεχνολογικούς κινδύνους. Σκοπός της πολιτικής προστασίας είναι «η λήψη μέτρων σχεδιασμού και εφαρμογής των, σε κεντρικό και περιφερειακό επίπεδο, προκειμένου να αντιμετωπισθούν περιπτώσεις έκτακτων αναγκών με την αξιοποίηση του ανθρώπινου δυναμικού και την χρησιμοποίηση δημόσιων ή ιδιωτικών μέσων». (Παπαδόπουλος 2000)
Η πολιτική προστασία μπορεί να οργανωθεί σε τέσσερα επίπεδα:

1. **Σχεδιασμός πριν την καταστροφή.** Στο σχέδιο αυτό περιλαμβάνετε ένα ευρύ φάσμα δραστηριοτήτων όπως τα προληπτικά έργα, ο κατάλληλος πολεοδομικός σχεδιασμός και ιδιαίτερα ο καθορισμός χρήσεων γης και η εκπόνηση σχεδίων έκτακτης ανάγκης και εκκένωσης.

2. **Προετοιμασία.** Είναι ο βαθμός ετοιμότητας στην οποία θα βρίσκετε ο κρατικός μηχανισμός αμέσως πριν το καταστροφικό γεγονός. Συνέρχονται τα επιτελικά και επιχειρησιακά όργανα και διατελούν σε πλήρη ετοιμότητα, για την εκτέλεση της αποστολής τους, λαμβανομένης και προληπτικών μέτρων όπου αυτό κρίνεται σκόπιμο.

3. **Ανταπόκριση και Κινητοποίηση.** Όλες οι ενέργειες που πρέπει να κάνουν οι αρχές, ως πρώτη αντίδραση βοήθειας και υποστήριξης της πληγείσας περιοχής, αμέσως μετά το καταστροφικό συμβάν. Οι επιχειρησιακές δυνάμεις συνεργαζόμενες και συντονιζόμενες ευρίσκονται σε πλήρη δράση. Το ανθρώπινο δυναμικό και τα υλικοτεχνικά μέσα αξιοποιούνται κατά τον καλύτερο τρόπο. Όπου κρίνεται σκόπιμο, ενημερώνονται και οι πολίτες για τη λήψη μέτρων αυτοπροστασίας, συνδρομή και διευκόλυνση του έργου του κράτους. Το σύστημα επικοινωνιών βρίσκεται σε πλήρη λειτουργία και οι υπηρεσίες διοικητικής μέριμνας είναι σε ετοιμότητα για τη στήριξη του επιχειρησιακού έργου και άμεσης επίλυσης προβλημάτων των πληγέντων.

4. **Ανάκτηση και Ανασυγκρότηση.** Πρόκειται για ποικιλες και μακροπρόθεσμες δραστηριότητες με τις οποίες επιδιώκεται η σταδιακή επαναφόρτωση της πληγείσας περιοχής στην κανονική της κατάσταση. Γίνεται εκτίμηση ζημιών, εκτίμηση της καταστάσεως, γενικώς από ειδικούς και αρμόδιους και ακολουθώς παρέχεται άμεση
αρωγή στους πληγέντες, λαμβάνονται αποφάσεις και μέτρα για την αποκατάσταση των
ζημιών και μη επανάληψη φαινομένων δυνάμενων να προληφθούν.(Εφημερίς της
κυβερνήσεως, 2003)

Οι σημαντικότεροι από τους φορείς που έχουν άμεση ή έμμεση σχέση με την πολιτική
προστασία στη χώρα μας είναι:

- Γενική Γραμματεία Πολιτικής Προστασίας.
- Γενικό Σχέδιο Πολιτικής Προστασίας "ΞΕΝΟΚΡΑΤΗΣ"
- Ο.Α.Σ.Π.
- Πυροσβεστικό Σώμα.
Σχήμα 1: Διάγραμμα ροής πληροφοριών στο σχέδιο "Ξενοκράτης" (2003)
1. ΠΥΡΚΑΓΙΕΣ

1.1. Πρόλογος

Η φωτιά ένα από τα στοιχεία της φύσης ανέκαθεν υπήρξε ένας φίλος, άλλα και ένας μεγάλος εχθρός του ανθρώπου. Αποτελεί οικολογικό παράγοντα αλλά ταυτόχρονα και φυσική δύναμη, που προκαλεί ανεπανόρθωτες καταστροφές στο φυσικό οικοσύστημα. Οι καταστροφικές συνέπειες της φωτιάς απαιτούν την άμεση αντιμετώπισή της μόλις αυτή εκδηλωθεί, πράγμα που σημαίνει ότι πρέπει να δοθεί ιδιαίτερη βαρύτητα στην διαχείρισή της.

Οι πυρκαγιές οφείλονται πολύ συχνά σε φυσικά αίτια, όπως σε κεραυνούς, ηφαιστεια, ηλιακή ακτινοβολία αλλά και σε ανθρώπινες ενέργειες ή παραλείψεις. Μια πυρκαγιά καταλήγει σε καταστροφή όταν αναστατώνει και αποδιοργανώνει τη ζωή του πληθυσμού, καταστρέφει σπίτια και έργα πολιτισμού, καταστρέφει δάση ή γεωργικές καλλιέργειες ή αφαιρεί τη ζωή ανθρώπων, αριθμό ζώων ή σπάνιων ειδών της πανίδας και της χλωρίδας.

1.2. Κατηγορίες Πυρκαγιών

Οι πυρκαγιές διακρίνονται σε:

- Δασικές
- Αστικές και
- Περιαστικές
1.2.1. Δασικές Πυρκαγιές

Οι δασικές πυρκαγιές διακρίνονται σε τρία διαφορετικά είδη: στις πυρκαγιές εδάφους, στις πυρκαγιές επιφάνειας και στις πυρκαγιές κόμης.

- Οι πυρκαγιές εδάφους καίνε την οργανική ύλη κάτω από την επιφάνεια του φυλλοστρώματος του δάσους. Η ταχύτητα καύσης τους είναι σχετικά μικρή γιατί η καύση ύλη δεν τροφοδοτείται με οξυγόνο. Η εντόπισή τους είναι δύσκολη καθώς και η κατάσβεσή τους. Οι ζημίες που προκαλούν είναι σημαντικές αφού καταστρέφουν τις ρίζες των δέντρων. Οι πυρκαγιές εδάφους συνήθως μετατρέπονται σε πυρκαγιές επιφάνειας.

- Οι πυρκαγιές επιφάνειας (ή έρπουσες) καίνε την χαμηλή βλάστηση, τα ξερά κλαδιά που βρίσκονται στο έδαφος και το κατόπτρο μέρος των δέντρων. Οι πυρκαγιές αυτού του είδους διαδίδονται ταχύτατα, γιατί επηρεάζονται από τον άνεμο, το οξυγόνο και την υψηλή θερμοκρασία. Κάτω από κανονικές συνθήκες μπορούν να ελέγχθουν εύκολα εφόσον δεν μεταπηδήσουν και μετατραπούν σε επικόροφες πυρκαγιές.

- Οι πυρκαγιές κόμης καίνε την κορυφή των δέντρων και των θάμνων. Αποτελούν τις πιο επικίνδυνες πυρκαγιές λόγω της μεγάλης ταχύτητας εξάπλωσής τους, τον συνδυασμό τους με ισχυρούς ανέμους καθώς και της πλήρης καταστροφής που προκαλούν.
1.2.2. Αστικές Πυρκαγιές

Η αστυφιλία, η άναρχη επέκταση των πόλεων, η πυκνή δόμηση, ο συνωστισμός στις πόλεις δημιούργησε τα γνωστά προβλήματα της ατμοσφαιρικής ρύπανσης, και της αισθητικής υποβάθμισης στον αστικό χώρο. Οι υπαίθριοι χώροι πρασίνου, τα πάρκα και τα άλογα μπορούν να λειτουργήσουν θετικά και να μετριάσουν τα παραπάνω προβλήματα. Οι πυρκαγιές οι οποίες εκδηλώνονται στους χώρους αυτούς και γενικότερα μέσα στον αστικό ιστό αποτελούν τις αστικές πυρκαγιές.

1.2.3. Περιαστικές Πυρκαγιές

Οι πυρκαγιές στα περιαστικά δάση είναι ένα πρόβλημα, που τα τελευταία είκοσι χρόνια έχει αναδειχθεί σε ξεχωριστό θέμα μεγάλης σημασίας και συγκεντρώνει ιδιαίτερο ενδιαφέρον από τους επιστήμονες και τους επαγγελματίες, που ασχολούνται με τις δασικές πυρκαγιές σε όλο τον κόσμο.

Συγκεκριμένα, διαφέρουν από τις συνηθισμένες δασικές πυρκαγιές ως προς:

- την ύπαρξη μεγάλου αριθμού κατοίκων και ερωμένως, τον κίνδυνο απώλειας ανθρώπινων ζωών, που έχει σαν αποτέλεσμα τη δημιουργία ιδιαίτερων συνθηκών δασοπυρόσβεσης,
- την ύπαρξη συγκεντρωμένων περιουσιακών στοιχείων (οικιών, επιχειρήσεων, αυτοκινήτων, υποδομών κλπ.), που έχουν μεγάλη και προφανή οικονομική αξία,
• την πιθανή ύπαρξη σημαντικών διαφορών στη σύνθεση και την κατανομή στο χώρο της καύσης ύλης,
• την πιθανή επίδραση επί των στοιχείων του περιβάλλοντος (καύσης ύλης, άνεμος) των κτιρίων και των άλλων στοιχείων οικιστικής ανάπτυξης της περιοχής
• την ύπαρξη υποδομών όπως δρόμων, σημεία υδροληψίας, δίκτυα ηλεκτρισμού, τηλεφώνου, κλπ.,
• την αφιέρωση πολλαπλάσιας προβολής από τα Μέσα Μαζικής Ενημέρωσης και την εκδήλωση μεγάλου ενδιαφέροντος τόσο από τους πολίτες, όσο και από τους πολιτικούς.

Όλα αυτά τα στοιχεία συνθέτουν μία ιδιαίτερη πραγματικότητα, που είναι εξαιρετικά δύσκολη για τις δασοπυροσβεστικές δυνάμεις. Η πραγματικότητα αυτή απαιτεί ειδική γνώση και προετοιμασία από όλους τους υπεύθυνους για την αντιμετώπιση των πυρκαγιών και την προστασία των πολιτών.

Πίνακας 1: Αριθμός αστικών πυρκαγιών για όλη την Ελλάδα. (Πηγή www.fireservice.gr)
1.3. Τα κυριότερα αίτια εκδήλωσης πυρκαγιών στην Ελλάδα

Υπάρχουν πολλοί λόγοι που τα ελληνικά δάση είναι ευάλωτα στις πυρκαγιές -τα παρατεταμένα θερμά και ξηρά καλοκαίρια, οι ήπιοι χειμώνες (χαρακτηριστικοί του Μεσογειακού κλίματος), οι δυνατοί άνεμοι, το έντονο ανάγλυφο των δασικών εδαφών και η εύφλεκτη ξηροφυτική βλάστηση. Όταν σε αυτούς τους παράγοντες προστεθεί και η έντονη ανθρώπινη δραστηριότητα, η ελλιπής διαχείριση των εύφλεκτων αυτών δασών και η επικράτηση της αντίληψης ότι η προστασία από τις δασικές πυρκαγιές ταυτίζεται με την δασοκυτταρότητα, αυξάνεται ο αριθμός των πυρκαγιών όπως και οι δασικές εκτάσεις που αυτές καταστρέφουν.

Ενδεικτικά αναφέρουμε ότι κατά τη δεκαετία του '90 ο μέσος όρος των καμένων εκτάσεων...
προσέγγισε τα 500.000 στρέμματα, ενώ μόνο κατά την διάρκεια του καλοκαιριού του 2007 το σύνολο των καμένων εκτάσεων ξεπέρασε τα 2,5 εκ. στρέμματα.

Τα κυριότερα αίτια πυρκαγιών στην Ελλάδα βάση στατιστικών στοιχείων οφείλονται κυρίως σε ανθρώπινη αμέλεια. Μερικά από αυτά δίνονται παρακάτω:

- Οι διάφορες γεωργικές δραστηριότητες και κυρίως η καύση ξερών χόρτων.
- Η απόρριψη αναμμένων τσιγάρων ή το άναμμα φωτιάς στο δάσος.
- Η απόρριψη σκουπιδιών στο δάσος.
- Η καύση σκουπιδιών και η ύπαρξη ανεξέλεγκτων χωματερών.
- Κακόβουλες ενέργειες (εμπρησμοί).
- Διάφορες δραστηριότητες σε εξοχικές κατοικίες.
- Ατυχήματα (τροχαία, βλάβες γεωργικών μηχανημάτων, κοκ)

Οι ανθρώπινες αιτίες δραστηριοτήτες έχουν σαν αποτέλεσμα να εκδηλώνονται πυρκαγιές τόσο συχνά που οι αντιχές των οικοσυστημάτων εξαντλούνται. Επιπλέον, η αναγέννηση και η διατήρηση των οικολογικών αξιών των οικοσυστημάτων γίνεται ακόμη πιο δύσκολη από τη διάσπαση που προκαλούν οι υποδομές -κυρίως οι δρόμοι και οι οικισμοί.

Παράλληλα, η ραγδαία αστικοποίηση του πληθυσμού και η μείωση της μόνιμης παρουσίας στην ύπαιθρο, η αποδυνάμωση της πρωτογενούς παραγωγής στα δάση και τις περιοχές γύρω από αυτά και η γενικότερη υποχώρηση του κλάδου της δασοποίας έχουν σαν αποτέλεσμα να μην γίνεται διαχείριση του δάσους τοπικά, να χάνονται οι ντόπιες πρακτικές και να ανεξάντως μειώνονται η βιομάζα, δηλαδή η κάθε είδους βλάστηση στο δάσος. Έτσι οι πρακτικές πρόληψης μειώνονται, η σφηδρότητα των πυρκαγιών αυξάνει και η έγκαιρη αντιμετώπισή τους γίνεται εξαιρετικά δύσκολη.
Πίνακας 3: Αίτια εκδήλωσης Πυρκαγιών (Πηγή Π. Κωσταντινίδη 2003)

<table>
<thead>
<tr>
<th>Αίτια εκδήλωσης Πυρκαγιών</th>
<th>Ποσοστό (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Καύση καλαμιών</td>
<td>12,8%</td>
</tr>
<tr>
<td>Τσιγάρα-Σπίρτα</td>
<td>17,8%</td>
</tr>
<tr>
<td>Στρατιωτικές ασκήσεις</td>
<td>0,7%</td>
</tr>
<tr>
<td>Σύρματα ΔΕΗ- Τρένα ΟΣΕ</td>
<td>0,7%</td>
</tr>
<tr>
<td>Σπινθήρες Μηχανών</td>
<td>2,1%</td>
</tr>
<tr>
<td>Εργαζόμενοι στην ύπαιθρο</td>
<td>2,9%</td>
</tr>
<tr>
<td>Εκδρομείς-Κυνηγοί</td>
<td>1,3%</td>
</tr>
<tr>
<td>Κάπνισμα μελισσών</td>
<td>0,5%</td>
</tr>
<tr>
<td>Πρόθεση</td>
<td>29,3%</td>
</tr>
<tr>
<td>Αγνώστες Αιτίες</td>
<td>25,7%</td>
</tr>
<tr>
<td>Κεραυνοί</td>
<td>2,2%</td>
</tr>
<tr>
<td>Καύση σκουπιδιών</td>
<td>6,1%</td>
</tr>
</tbody>
</table>

1.4. Επιπτώσεις Δασικών πυρκαγιών

Μία σειρά από χαρακτηριστικά προσδιορίζουν την ένταση και τη σφοδρότητα των δασικών πυρκαγιών και συνεπώς τις επιπτώσεις τους. Αυτά περιλαμβάνουν το είδος της βλάστησης που καίγεται, την ένταση των ανέμων, το είδος και την κλίση του εδάφους, την ταχύτητα της πυρκαγιάς, κοκ. Όλα αυτά τα χαρακτηριστικά συνδυάζονται για να διαμορφώσουν τον ακριβή
χαρακτήρα κάθε πυρκαγιάς, και συνεπώς καθορίζουν και τις επιπτώσεις που αυτή έχει. Σημαντικά ως προς τις επιπτώσεις είναι επίσης τα διάφορα γεωγραφικά χαρακτηριστικά της κάθε πυρκαγιάς (έκταση, τοποθεσία), αλλά και η χρονική της σύμπτωση.

Οι κυρίοτερες επιπτώσεις των δασικών πυρκαγιών είναι:

- **Καταστροφή της βλάστησης.** Τα περισσότερα δασικά είδη που απαντώνται σε χαμηλά υψόμετρα της χώρας μας (πχ πεύκα) είναι προσαρμοσμένα στην πυρκαγιά και μπορούν να ανακάμψουν άμεσα με δεδομένο πάντα ότι δεν έχουν και επανειλημμένα στο πρόσφατο παρελθόν. Πολλές φορές μάλιστα, τα είδη αυτά μπορεί και να ωφελούνται από την ανανέωση που προκύπτει μετά από μία πυρκαγιά. Αντιθέτως τα περισσότερα είδη των μεγάλων υψομέτρων (πχ χέλατα) δεν μπορούν να ανακάμψουν με φυσικό τρόπο μετά από μία πυρκαγιά, και ούτε μπορεί να θεωρηθεί πως ωφελούνται με οποιονδήποτε τρόπο.

- **Διάβρωση του εδάφους.** Οι υψηλές θερμοκρασίες που επικρατούν σε μία πυρκαγιά, μεταξύ άλλων παραγόντων, μεταβάλλουν την εδαφική δομή και μειώνουν τη συνοχή του εδάφους. Ταυτόχρονα, η απομάκρυνση της βλάστησης το αφήνει απόλυτα εκτεθειμένο στη βροχή και τον αέρα και μειώνει τη δυνατότητα απορρόφησης του νερού. Το αποτέλεσμα είναι ότι τα εδάφη γίνονται πιο ευπαθή, μπορεί να απομακρύνονται από τον άνεμο ή να παρασύρονται από το ορμητικό βρόχινο νερό. Ανάλογα με την κλίση του εδάφους, αυτή η φθορά μπορεί να οδηγήσει τόσο σε σταδιακή απώλεια της εδαφικής κάλυψης –με συνέπειες για τις δυνατότητες αναγέννησης της βλάστησης–, ενώ η μειωμένη δυνατότητα απορρόφησης νερού μπορεί να συμβάλει σε φαινόμενα πλημμύρων.
• Επιπτώσεις στην πανίδα. Ο τρόπος με τον οποίο οι πυρκαγιές επηρεάζουν την πανίδα είναι ιδιαίτερα σύνθετος και δύσκολα μπορεί να αποτιμηθεί σε γενικό επίπεδο. Σε γενικές γραμμές τα περισσότερα μεγάλα θηλαστικά όπως και τα πουλιά έχουν τη δυνατότητα να διαφύγουν από την περιοχή της πυρκαγιάς, ενώ πολλά είδη ερπετών προφυλάσσονται από αυτήν καλυπτόμενα στο έδαφος ή στα βράχια. Αντίθετα τα μικρότερα θηλαστικά, τα αρθρώποδα αλλά και πολλά είδη ερπετών και μικρών δασόβιων πουλιών δεν προλαβαίνουν συνήθως να διαφύγουν. Αντίστοιχα, οι επιπτώσεις της πυρκαγιάς στη βλάστηση ωφελούν μεγάλο αριθμό ειδών που προτιμούν τους ανοικτούς χώρους ή βόσκουν ενώ θίγουν τα καθαρά δασόβια είδη πουλιών και μικρών θηλαστικών. Οι επιπτώσεις μπορεί είναι σημαντικότερες εάν η πυρκαγιά εκδηλωθεί την εποχή της αναπαραγωγής, εάν η έκταση της είναι τόσο μεγάλη που να καλύπτει μεγάλο μέρος της εξάπλωσης ενός είδους ή εάν η διάσπαση του βιοτόπου από υποδομές είναι τέτοια που να εμποδίζει τη διαφυγή των ζώων και μετέπειτα τον επανεπικισμό.

• Άλλαξη του κλίματος και ατμοσφαιρική ρύπανση. Οι πυρκαγιές μπορεί να επιβαρύνουν προσωρινά τον ατμοσφαιρικό αέρα ενώ η καταστροφή της βλάστησης επηρεάζει το μικροκλίμα των συγκεκριμένων περιοχών, καθώς μειώνει τις ενεργειτικές ψυκτικές επιδράσεις των δασικών δέντρων και αυξάνει την ηλιακή αντανάκλαση του έδαφους.

• Επιπτώσεις στην πρωτογενή παραγωγή. Παρότι η παραγωγή μίας περιοχής θίγεται συνολικά από την πυρκαγιά, οι επιπτώσεις στην πρωτογενή παραγωγή, δηλαδή στη γεωργία, την κτηνοτροφία και την υλοτομία, είναι οι πιο συχνές και εμφανείς αλλά και αυτές οι οποίες αλληλεπιδρούν άμεσα με τα οικολογικά χαρακτηριστικά.
1.5. Διαχείριση Πυρκαγιών

Πριν αναφερθούμε στην στρατηγική αντιπυρικής διαχείρισης, θα ήταν σκόπιμο να δούμε τα κύρια χαρακτηριστικά της υφιστάμενης κατάστασης και των συνθηκών που επικρατούν και που αφορούν άμεσα την διαχείριση πυρκαγιών.

- Οδικά δίκτυα ασφαλείας και ασφαλτώστες με αντιπυρικές ζώνες
- Πυρανίχυση με λίγα παρατηρητήρια και περιπολίες
- Προβληματικές επικοινωνίες για προειδοποίηση και κατάσβεση
- Προβλήματα με υδατοδιάλυμα και συνεργεία πυρόσβεσης
- Εξάρτηση από ιδιωτικές εταιρείες για θαλάσσια συγκοινωνία
- Καθυστερημένοι η αρχική προσβολή μια πυρκαγιάς
- Το ανάγλυφο του εδάφους καθίστα δύσκολη την χρήση μηχανημάτων
- Η αεροπυρόσβεση να γίνετε με ορθολογικά κριτήρια και περιορισμούς
- Έλλειψη οργάνωσης και συντονισμού επιχείρησης κατάσβεσης
- Αδυναμία έμμεσων τρόπων κατάσβεσης
- Δυσκολίες στην εκτέλεση επιχειρήσεων μεγάλης κλίμακας

1.5.1. Στρατηγική αντιπυρικής διαχείρισης
Η επιτυχής πρόληψη και καταστολή των πυρκαγιών εξαρτάται από τρεις κατηγορίες προϋποθέσεων, που θα μπορούσαμε να ονομάσουμε τα <<3 Έψιλον>> της αντιπυρικής προστασίας:

- Επιβολή – νόμων και κανονισμών
- Εκπαίδευση- προσωπικού και πολιτών
- Εφαρμογή- έρευνας και τεχνολογίας

Το μοντέλο αυτό μπορεί να αποτελέσει τον κορμό επί του οποίου θα κτισθεί ένας πλήρης κορμός αντιπυρικής προστασίας.

Εκείνα που μπορεί να αποτελέσουν πιο αριθμητικά στόχους του σύγχρονου αντιπυρικού σχεδιασμού είναι:

- Η ελάττωση του αριθμού των ανθρωπογενών πυρκαγιών
- Ο περιορισμός της καμένης έκτασης που αντιστοιχεί σε κάθε εκδηλωμένη πυρκαγιά
- Η ελαχιστοποίηση του κόστους και των δαπανών που αναλογούν για την κατάσβεση κάθε συγκεκριμένης πυρκαγιάς
- Η μείωση των οικολογικών βλαβών που προκαλούνται από τη φωτιά στο ευρύτερο οικοσύστημα

Η εκπόνηση ενός αντιπυρικού προγράμματος θα πρέπει να χρησιμοποιεί τα <<3 Έψιλον>> και να επιδιώκει τους προηγούμενους στόχους , αναγνωρίζοντας και τον οικολογικό ρόλο της φωτιάς. Κάτι τέτοιο θα στηρίζεται σε βραχυπρόθεσμη και μεσοπρόθεσμη λήψη θεσμικών, προληπτικών, κατασταλτικών και προστατευτικών μέτρων, τα οποία συνοψίζονται ως εξής:
• Θεσμικά μέτρα. Τα μέτρα αυτά θα πρέπει να αποβλέπουν στην άμεση διευθέτηση των θεμάτων ιδιοκτησίας, χρήσεων και διαχείρισης γης, κοινωνικών και οικονομικών προτεραιοτήτων και τουριστικής ανάπτυξης σε κάθε περιοχή. Μ’ αυτόν τον τρόπο αποτρέπονται οι πυρκαγιές που οφείλονται σε ανθρωπογενείς αιτίες.

• Πρακτικά μέτρα. Τα μέτρα αυτά θα συνιστούν ενέργειες που γίνονται πριν από την εκδήλωση της πυρκαγιάς και θα περιλαμβάνουν καθαρισμούς και διαχείριση καύσης ύλης, δημιουργία αντιπυρικών λωρίδων σε στρατηγικά σημεία, αποτελεσματικής περιπολίας και φύλαξη σε περιόδους και τόπου ψηλού κινδύνου, ορθολογική κατασκευή και συντήρηση υδατοδεξαμενών και δρόμων.

• Σύγχρονη και αποτελεσματική εκπαίδευση προσωπικού και πολιτών. Το προσωπικό που εμπλέκετε στην πρόληψη και καταστολή των πυρκαγιών θα πρέπει να παρακολουθεί ένα ποιοτικό πρόγραμμα επιμορφωτικών σεμιναρίων που θα διενεργούνται σε μόνιμη και συνεχή βάση. Επίσης η εκπαίδευση ομάδων εθελοντών πολιτών και γενικότερη επιμόρφωση του κόσμου θα συμβάλλει στην ευρύτερη συμμετοχή και συνειδητοποίηση του κοινού για την κρίσιμητη τετοιων περιβαλλοντικών καταστροφών.

• Οργάνωση και συντονισμός επιχειρήσεως κατάσβεσης. Προτείνεται η χρήση σύγχρονων τεχνολογιών που θα συμβάλλουν στην έγκαιρη προειδοποίηση του κινδύνου των πυρκαγιών και στην πρόβλεψη της εξάπλωσης τους. Επίσης προτείνεται η δημιουργία ομάδων κρύσης κατά τόπους, οι οποίες να έχουν καλή γνώση των αρχών δασοπυρόσβεσης. Απαραίτητη προτύπωση για την επιτυχία τετοιων επιχειρήσεων είναι η καλή γνώση και εφαρμογή των διάφορων σχεδίων έκτακτων περιστατικών από τις πολιτικές και δημοτικές αρχές, όπως το σχέδιο "<<Ξενοκράτης>>".
• **Αποκατάσταση και προστασία καμένων περιοχών.** Η εφαρμογή του πιο πετυχημένου σχεδίου αντιπυρικής προστασίας δε θα μπορούσε να εξαλείψει πλήρως την εμφάνιση της φωτιάς από τα φυσικά οικοσυστήματα. Θα μπορούσε όμως να περιορίσει τον αριθμό των πυρκαγιών, την εξάπλωσή τους, τις δαπάνες καταπολέμησης και τις βλαβερές συνέπειες τους.

1.5.2. Επιχειρησιακός σχεδιασμός σύμφωνα με το σχέδιο <<Ξενοκράτης>>

Το πρόγραμμα αντιπυρικής προστασίας περιλαμβάνει 5 φάσεις:

- **Πρώτη φάση:** πρόληψη πυρκαγιών

Η φάση αυτή περιλαμβάνει μέτρα και ενέργειες για την πρόληψη πυρκαγιών:

- **Δεύτερη φάση:** Προκατασταλτικά μέτρα

Η φάση αυτή περιλαμβάνει μέτρα και ενέργειες που συμβάλλουν στην έγκαιρη επισήμανση αναγγελίας και στη οργανωμένη και συντονισμένη αντιμετώπιση των πυρκαγιών.

- **Τρίτη φάση:** Καταστολή πυρκαγιών

Η φάση αυτή περιλαμβάνει μέτρα και ενέργειες που συνοψίζονται ως ακολούθως:

- **Τέταρτη φάση:** Φύλαξη

Στη φάση αυτή περιλαμβάνονται μέτρα και ενέργειες που πραγματοποιούνται μετά το πέρας της κατάσβεσης της πυρκαγιάς:
• Πέμπτη φάση: Άρση συνεπειών-αποκατάσταση ζημιών

Εικόνα 1: Χάρτης με περιοχές και δασικές εκτάσεις ευαίσθητες σε πυρκαγιές που έχουν κηρυχθεί ως επικίνδυνες
2. ΣΕΙΣΜΟΙ

Τα σεισμικά φαινόμενα αποτελούσαν πάντα αντικείμενο της απορίας και του ενδιαφέροντος του ανθρώπου ειδικότερα κατά την αρχαιότητα αλλά και μέχρι τις αρχές του 19ου αιώνα, όπου οι σεισμοί θεωρούνταν ως υπερψυκτικά φαινόμενα και περιβάλλονταν από πλήθος δεισιδαιμονίων και προκαταλήψεων. Κανένα φυσικό φαινόμενο δεν προκάλεσε στον άνθρωπο τόσο φόβο και ανασφάλεια όσο ο σεισμός και αυτό γιατί, κατά την εκδήλωση ενός σεισμού δεν υπάρχουν συνήθως πολλά περιθώρια για προφύλαξη και δράση, αφού πρόκειται για ένα είδος φυσικό γεγονότος που εκδηλώνεται απότομα και χωρίς καμία προειδοποίηση. (Λέκκας 2000)

Ως σεισμός χαρακτηρίζεται γενικά μια απότομη διατάραξη στο εσωτερικό της γης, που εκδηλώνεται στην επιφάνεια της με κίνηση του εδάφους. Η κίνηση αυτή, που είναι υπεύθυνη για τα καταστροφικά αποτελέσματα του σεισμού, προκαλείται από τη διέλυση ελαστικών σεισμικών κυμάτων διαμέσου των πετρωμάτων της γης.

2.1. Χρήσιμες Έννοιες – Ορισμοί

Όταν συμβεί ένας σεισμός σε μια περιοχή, όλοι μιλούν συνήθως για τρία πράγματα:

- Το Επίκεντρο
- Το Μέγεθος
- Την Ένταση
Επειδή σε πολλές περιπτώσεις υπάρχει σύγχρος γύρω από την ερμηνεία ορισμένων εννοιών θεωρείται χρήσιμο να αναφερθούν συνοπτικά οι κυριότεροι όροι που χρησιμοποιούνται.

- **Επίκεντρο**, είναι το σημείο που βρίσκεται στην επιφάνεια της γης, ακριβώς κατακόρυφα πάνω από την εστία

- **Μέγεθος**, είναι η ποσότητα ενέργειας που απελευθερώνεται με ένα σεισμό. Αυτή η ποσότητα είναι συγκεκριμένη, μοναδική για κάθε σεισμό και υπολογίζεται με μαθηματικούς τύπους, χρησιμοποιώντας στοιχεία που καταγράφουν ειδικά όργανα τα οποία ονομάζονται σεισμογράφοι. Οι μετρήσεις του μεγέθους γίνονται με βάση την κλίμακα Ρίχτερ. Σεισμοί με μέγεθος μικρότερο των 4,0 Ρίχτερ δε συνήθως ζημιές, ενώ αυτοί με μέγεθος μικρότερο των 2,0 Ρίχτερ δε γίνονται αισθητοί. Αντίθετα εκείνοι με μέγεθος μεγαλύτερο των 5,0 Ρίχτερ μπορούν να προκαλέσουν καταστροφές. Οι σεισμοί μπορούν να γίνουν αισθητοί σε ακτίνα πολλών χιλιομέτρων και έχουν διάρκεια μικρότερη του ενός λεπτού. Μέχρι σήμερα ο τόπος, ο χρόνος και το μέγεθος ενός σεισμού δεν μπορούν να προβλεφθούν, αλλά οι επιστήμονες εργάζονται για το σκοπό αυτό

- **Ένταση**, μας δείχνει το πόσο καταστροφικός είναι ένας σεισμός. Η ένταση μετρείται σε βαθμούς Μερκάλλι και εξαρτάται από το εάν ένας σεισμός έχει βλάψει μια περιοχή ή όχι. Δεν είναι δηλαδή ένας αριθμός μοναδικός, όπως το μέγεθος και διαφέρει από μέρος σε μέρος. Σε μια τοποθεσία κοντά στο επίκεντρο, η ένταση του σεισμού μπορεί να είναι μεγαλύτερη απ’ ότι μακριά από αυτό.
Πίνακας 4: Η Δωδεκάβαθμη κλίμακα Mercali – Sieberg και τα κύρια χαρακτηριστικά της ΠΗΓΗ: Παπαζάχος Β. & Παπαζάχου Κ. 1999)

ΒΑΘΜΟΙ ΑΠΟΤΕΛΕΣΜΑΤΑ

<table>
<thead>
<tr>
<th>ΒΑΘΜΟΙ</th>
<th>ΑΠΟΣΤΟΛΗΣΜΑΤΑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Καταγράφεται μόνο από τα σεισμικά όργανα</td>
</tr>
<tr>
<td></td>
<td>Αίσθητος σε μερικούς ανθρώπους που βρίσκονται σε ησυχία σε υψηλούς ορόφους</td>
</tr>
<tr>
<td>II</td>
<td>Αίσθητος από λίγους ανθρώπους που βρίσκονται μέσα στο σπίτι</td>
</tr>
<tr>
<td>III</td>
<td>Αίσθητος από πολλούς ανθρώπους που βρίσκονται μέσα σε σπίτι και στο ύπαιθρο. Ξύπνημα λίγων ανθρώπων. Κρότος παραθύρων</td>
</tr>
<tr>
<td>IV</td>
<td>Αίσθητος από πολλούς ανθρώπους μέσα στα σπίτια και στο ύπαιθρο. Ξύπνημα πολλών ανθρώπων. Αίώρηση κρεμασμένων αντικειμένων.</td>
</tr>
<tr>
<td>V</td>
<td>Ανατροπή μερικών μικρών αντικειμένων</td>
</tr>
<tr>
<td>VI</td>
<td>Ανατροπή πολυάριθμων μεγάλων αντικειμένων. Ήχηση μικρών καμπάνων. Πτώση λίγων κεραμιδιών και καπνοδόχων. Ελαφρές βλάβες σε κτίρια.</td>
</tr>
<tr>
<td>VII</td>
<td>Ήχηση μεγάλων καμπάνων. Πτώση πολυάριθμων κεραμιδιών και καπνοδόχων. Μέτριες βλάβες σε κτίρια. Μερική καταστροφή λίγων κτιρίων</td>
</tr>
<tr>
<td>VIII</td>
<td>Μερική καταστροφή σε ποσοστό μεγαλύτερο του 25% του ολικού αριθμού των κτιρίων. Ολική καταστροφή σε ποσοστό μεγαλύτερο του</td>
</tr>
</tbody>
</table>
Τα κύρια χαρακτηριστικά της έντασης ενός σεισμού περιγράφονται παρακάτω

- **Εστία** του σεισμού είναι το σημείο που αρχίζει η θραύση του πετρώματος για να δημιουργηθεί το σεισμικό ρήγμα.

- **Εστιακό βάθος** του σεισμού είναι η απόσταση μεταξύ του επίκεντρου και της εστίας.

- **Κλίμακα Ρίχτερ** είναι η κλίμακα με την οποία μετρούνται τα μεγέθη των σεισμών. Πήρε το όνομά του σεισμολόγου RICHTER που το 1935 για πρώτη φορά εισήγαγε την έννοια του μεγέθους. Η κλίμακα RICHTER θεωρητικά είναι «ανοιχτή» προς τα κάτω και προς τα επάνω. Σεισμός όμως μεγαλύτερος από 8,9 βαθμούς δεν έχει μέχρι σήμερα (παγκόσμια) καταγραφεί, ενώ ο μεγαλύτερος που έγινε στον Ελληνικό χώρο τον παρόντα αιώνα είχε μέγεθος 8 βαθμούς.
Οι σεισμοί ανάλογα με τον τρόπο γέννησής τους διακρίνονται σε τέσσερις κατηγορίες: τεκτονικούς, ηφαιστειογενείς, εγκατακρημνησιγενείς, και σε σεισμούς που οφείλονται σε υπόγειες πυρηνικές δοκιμές και τεχνητές εκρήξεις.

- Οι τεκτονικοί σεισμοί είναι η πιο κοινή κατηγορία σεισμών και είναι αποτέλεσμα της ξαφνικής διάρρηξης πετρωμάτων υπό την επίδραση τεκτονικών δυνάμεων.
- Οι ηφαιστειογενείς σεισμοί συνοδεύουν συνήθως ηφαιστειακές εκρήξεις.
- Οι εγκατακρημνησιγενείς είναι σεισμοί που συμβαίνουν σε περιοχές όπου το υπόγεφο εμφανίζει μεγάλα έγκινα ή σπήλαια και σε περιοχές όπου υπάρχουν ορυχεία με παλιά ή πρόσφατα δραστηριότητα. Εγκατακρημνησιγενείς σεισμοί δημιουργούνται συχνά από μεγάλες κατολισθήσεις.
- Οι σεισμοί που οφείλονται σε υπόγειες πυρηνικές δοκιμές και τεχνητές εκρήξεις μπορεί να μην συμβαίνουν συχνά και να μην έχουν τα ίδια καταστρεπτικά αποτελέσματα με ένα τεκτονικό σεισμό, όμως διαταράσσουν τη γεωλογική ισορροπία του εδάφους μιας περιοχής.
Οι σεισμοί ανάλογα με το εστιακό βάθος διακρίνονται σε τρεις κατηγορίες, επιφανειακούς, ενδιάμεσου βάθους και μεγάλου βάθους.

- Επιφανειακοί σεισμοί είναι οι σεισμοί των οποίων το εστιακό βάθος είναι μικρότερο των 60 km.
- Ενδιάμεσου βάθους είναι οι σεισμοί των οποίων το εστιακό βάθος κυμαίνεται μεταξύ 60 και 180 km.
- Μεγάλου βάθους είναι οι σεισμοί των οποίων το εστιακό βάθος είναι μεγαλύτερο από 180 km.
Οι σεισμοί ανάλογα με τη θέση του επίκεντρου τους σε σχέση με τα όρια των λιθόσφαιρικών πλακών διακρίνονται σε σεισμούς που γίνονται κοντά στα όρια των πλακών και σε σεισμούς που γίνονται στα ενδότερα των λιθόσφαιρικών πλακών.

Οι σεισμοί που γίνονται κοντά στα όρια λιθόσφαιρικών πλακών που συγκλίνουν αντιπροσωπεύουν το 90% της παγκόσμιας εκλυόμενης σεισμικής ενέργειας. Οι σεισμοί αυτοί είναι κατά κύριο λόγο επιφανειακοί, κατά δεύτερο λόγο ενδιαμέσου βάθους και σε μικρότερο ποσοστό σεισμοί μεγάλου βάθους.

Οι σεισμοί που γίνονται κοντά στα όρια λιθόσφαιρικών πλακών που αποκλίνουν αντιπροσωπεύουν το 10% της παγκόσμιας εκλυόμενης σεισμικής ενέργειας.

2.2. Αίτια γένεσης των Σεισμών

Οι σεισμοί αποτελούν ένα από τα διάφορα γεωδυναμικά φαινόμενα, τα οποία έχουν κοινά αίτια γένεσης. Τα φαινόμενα αυτά είναι η υφαντειακή δράση, τα γεωμορφολογικά χαρακτηριστικά τεκτονικής προέλευσης, παραμορφώσεις και διαρρήξεις του φλοιού της γης, γεωθερμικές εκδηλώσεις κλπ. Πολλά από τα γεωδυναμικά φαινόμενα που παρατηρούνται σήμερα είναι αποτελέσματα παλαιοτέρων γεωλογικών διαδικασιών και δεν σχετίζονται άμεσα με την σημερινή σεισμική δράση. (Παπαζάχος και Παπαζάχου 1999)

Τα αίτια των γεωδυναμικών φαινομένων, συνεπώς και της σεισμικής δράσης, βρίσκονται στο εσωτερικό της γης και ειδικά μέσα στο στερεό φλοιό. Ο φλοιός είναι το λεπτότερο στρώμα και
από πλευράς φυσικών ιδιοτήτων είναι στερεός και δύσκαμπτος. Το μέσο πάχος του φλοιού κάτω
από ηπειρωτικές και οκεανίες περιοχές έχει υπολογιστεί ότι είναι 5 και 30-35 km αντίστοιχα.

Το στρώμα κάτω από το φλοιό είναι ο μανδύας και εκτιμάται ότι έχει μεγάλη περιεκτικότητα
σε πυρίτιο, μαγνήσιο και ασβέστιο. Ο μανδύας είναι ξεστότερος και πυκνότερος από το φλοιό
καθόσον η θερμοκρασία και η πίεση μέσα στη Γη αυξάνονται με το βάθος. Το πάχος του μανδύα
υπολογίζεται ότι είναι περίπου 2900 km.

Ο πυρήνας βρίσκεται κάτω από το μανδύα και υπολογίζεται ότι έχει πάχος περίπου 3500 km. Ο
πυρήνας έχει μεγάλη περιεκτικότητα σε σίδηρο και αποτελείται από δύο τμήματα. Το εσωτερικό
tμήμα θεωρείται ότι είναι στερεό με πάχος περίπου 2200 km. Το εξωτερικό τμήμα θεωρείται ότι
eίναι σε ρευστή μορφή με πάχος περίπου 1250 km.

Σχήμα 3: Δομή του εσωτερικού της γης (Πηγή www.civilprotection.gr)
Η ένταση και η μορφή της ενεργού τεκτονικής δεν είναι η ίδια σε όλες τις περιοχές της γης.

Υπάρχουν περιοχές όπου η ένταση της τεκτονικής δράσης σήμερα είναι ισχυρή και άλλες όπου η δράση αυτή είναι σήμερα ασθενής αλλά μπορεί στο γεωλογικό παρελθόν να ήταν έντονη. Τα σπουδαιότερα γεωτεκτονικά φαινόμενα που παρατηρούνται στην επιφάνεια της γης και είναι αποτέλεσμα της ενεργού τεκτονικής συμβαίνουν πάνω σε ορισμένες ζώνες της επιφάνειας της γης, οι οποίες κατατάσσονται χωρικά σε δύο συστήματα ζωνών διάρρηξης, στο «ηπειρωτικό σύστημα διάρρηξης» και στο σύστημα των «μεσοωκεανικών ράχεων».

Σχήμα 4: Τα δύο συστήματα ζωνών διάρρηξης του φλοιού της γης (Πηγή www.civilprotection.gr)

Η λιθόσφαιρα είναι το δύσκαμπτο επιφανειακό στρώμα της γης, το οποίο έχει μέσο πάχος περίπου 80 km και περιλαμβάνει το φλοιό και μέρος του πάνω μανδύα της γης. Το στρώμα που βρίσκεται κάτω από τη λιθόσφαιρα αποτελείται από παχύρρευστο υλικό και για το λόγο αυτό το εύκαμπτο αυτό στρώμα ονομάζεται ασθενόσφαιρα.

Η λιθόσφαιρα δεν είναι ενιαία αλλά είναι χωρισμένη σε μεγάλα τμήματα τα οποία ονομάζονται λιθοσφαιρικές πλάκες. Οι δύσκαμπτες αυτές πλάκες δημιουργούνται στις μεσοωκεανικές ράχες από θερμό υλικό που βγαίνει εκεί και κινούνται πάνω στη παχύρρευστη
ασθενόσφαιρα με σχετικές μεταξύ τους ταχύτητες. Το υλικό αυτό ψύχεται, στερεοποιείται και σχηματίζεται έτσι, και από τις δύο πλευρές κάθε ράχης, τμήματα δύο λιθοσφαιρικών πλακών οι οποίες αποκλίνουν και απομακρύνονται από την ράχη. Οι απομακρύνσεις αυτές των λιθοσφαιρικών πλακών γίνονται με κατεύθυνση προς το ηπειρωτικό σύστημα διάρρηξης (νησιωτικά τόξα, νέες οροσειρές, οικεάνες τάφροι κλπ.) όπου συγκλίνουν ανά δύο τέτοιες πλάκες και η πυκνότερη απ’ αυτές βυθίζεται πλάγια (καταδύεται) κάτω από την άλλη μέχρις ότου καταστραφεί (λιώσει) μέσα στο θερμό μανδύα της γης.

Οι μεγαλύτερες λιθοσφαιρικές πλάκες της γης είναι η Ευρασιατική, η Αφρικανική πλάκα, η Αμερικάνικη, η Ειρηνική, η Ινδική και η Ανταρκτική. Οι πλάκες αυτές παρά το τεράστιο μέγεθος και βάρος τους, (από φυσικά αίτια που βρίσκονται στο εσωτερικό της γης) είναι σε διαρκή κίνηση ανεπαίσθητη από τον άνθρωπο, αφού σε ένα χρόνο μετακινούνται από 1 έως 18 cm. Με την κίνησή τους αυτή απομακρύνονται από την μία πλευρά ενώ από την άλλη αντιθέτη συγκλίνουν. Στα σημεία που συγκλίνουν και ενώνονται (κλειδώνουν) με μία άλλη πλάκα λόγω ακριβώς αυτής της κινήσεως, ασκείται πίεση που συνεχώς αυξάνεται, με αποτέλεσμα τη συγκέντρωση μεγάλων ποσοτήτων δυναμικής ενέργειας, και τάσεων. Όταν οι πίεσες (τάσεις) υπερνικήσουν σε ορισμένο σημείο το όριο αντοχής του πετρώματος, το πέτρωμα σπάει και δημιουργείται ένα σεισμικό ρήγμα, δηλαδή μία ανώμαλη επιφάνεια που χωρίζει το πέτρωμα στα δύο. Οι δύο πλευρές του ρήγματος γλιστρούν απότομα με αντίθετες κατευθύνσεις για να κλείσουν το ρήγμα. Η ταλάντωση (κίνηση) που δημιουργείται τη στιγμή αυτή λέγεται σεισμικό κύμα, το οποίο μεταδίδεται από σημείο σε σημείο μέσα στη γη με αποτέλεσμα να φθάνει στην επιφάνεια της και έτσι να δημιουργεί τον σεισμό, δηλαδή την ταλάντωσή του εδάφους. Το τμήμα της λιθόσφαιρας γύρω από το ρήγμα, το οποίο παραμορφώνεται κατά την γένεσή του σεισμού, λέγεται σεισμογόνος χώρος και ο όγκος του χώρου αυτού ονομάζεται σεισμογόνος
όγκος. Όσο μεγαλύτερος είναι ο χώρος αυτός τόσο μεγαλύτερη είναι η σεισμική ενέργεια που θα απελευθερωθεί, δηλαδή, τόσο μεγαλύτερος είναι ο σεισμός που θα γίνει.

2.3. Γεωμορφολογικές και Γεωφυσικές ιδιότητες του ελληνικού χώρου

Ο Ελληνικός χώρος βρίσκεται στο όριο επαφής και σύγκλισης της Αφρικανικής λιθοσφαιρικής πλάκας και της Ευρασιατικής λιθοσφαιρικής πλάκας. Για το λόγο αυτό, η ενεργός τεκτονική στο χώρο αυτό είναι έντονη, όπως εξάλλου δείχνει η μεγάλη σεισμικότητα, η παραμόρφωση των διαφόρων γεωλογικών ζωνών και τα ηραστειακά φαινόμενα που παρατηρούνται στην περιοχή.

Τα πιο εντυπωσιακά γεωμορφολογικά χαρακτηριστικά τεκτονικής προέλευσης του χώρου αυτού είναι η «ελληνική τάφρος», το «ελληνικό τόξο» και η «λεκάνη του Βορείου Αιγαίου».

Η ελληνική τάφρος αποτελείται από μία σειρά θαλάσσιων λεκανών που έχουν βάθος μέχρι 5 km Αυτή είναι παράλληλη προς το ελληνικό τόξο και περιλαμβάνει μικρότερες γραμμικές τάφρους, όπως είναι οι τάφροι του Πλινίου και του Στράβωνα νοτιοανατολικά της Κρήτης και η τάφρος του Ιονίου πελάγους.
Σχήμα 5: Τα κύρια γεωμορφολογικά γνώρισματα τεκτονικής προέλευσης στον ελληνικό χώρο (Πηγή Παπαζάχος 1999)

Το Ελληνικό τόξο αποτελείται από το εξωτερικό ιζηματογενές τόξο, το οποίο συνδέει τις Δυναρικές Άλπεις με τις Τουρκικές Ταυρίδες και το εσωτερικό ηφαιστειακό τόξο το οποίο είναι παράλληλο προς το ιζηματογενές τόξο και βρίσκεται σε μία μέση απόσταση 120 km απ’ αυτό. Το ιζηματογενές τόξο (Ελληνίδες οροσειρές, Ιώνια νησιά, Κρήτη, Ρόδος) αποτελείται από παλαιοζωικά μέχρι τριτογενή πετρώματα, ενώ το ηφαιστειακό τόξο αποτελείται από διάφορα ηφαιστειακά νησιά, ανδεστικά ενεργά ηφαιστεία (Μέθανα, Σαντορίνη, Νίσυρος) και θειονίες. Μεταξύ του ιζηματογενούς και του ηφαιστειακού τόξου βρίσκεται η λεκάνη του Κρητικού Πελάγους (λεκάνη νοτίου Αιγαίου) της οποίας το βάθος φθάνει τα 2.000 m περίπου.
Σχήμα 6: Το Ελληνικό τόξο (Παπανικολάου Δ., 1998)

Η πιο ενδιαφέρουσα γεωμορφολογική δομή τεκτονικής προέλευσης στο Βόρειο Αιγαίο είναι η τάφρος του βορείου Αιγαίου με βάθος νερού μέχρι 1.500 m περίπου. Επεκταση της προς τα βορειοδυτικά αποτελούν πιθανώς οι μικρές λεκάνες της θάλασσας του Μαρμαρά.

Οι γεωφυσικές ιδιότητες στο εσωτερικό μέρος του χώρου αυτού, δηλαδή, στο κοίλο μέρος του ελληνικού τόξου (Αιγαίου και γύρω περιοχές) παρουσιάζουν σαφή αντίθετη με τις γεωφυσικές ιδιότητες στο εξωτερικό μέρος του χώρου, δηλαδή, στο κυρτό μέρος του ελληνικού τόξου (ελληνική τάφρος, ανατολική Μεσόγειος). Έτσι, οι βαρυτομετρικές ανωμαλίες ελεύθερου αέρα είναι θετικές στο Αιγαίο, ενώ αυτές είναι αρνητικές στην Ανατολική Μεσόγειο. Θετικές μαγνητικές ανωμαλίες έχουν μετρηθεί σε διάφορα μέρη του Αιγαίου, ενώ το μαγνητικό πεδίο είναι αδιατάρακτο στην ανατολική Μεσόγειο, νότια της Κρήτης. Η ροή θερμότητας είναι υψηλή (~ 2,1 HFU= 2,1 μεγιά/ cm² * sec) στο Αιγαίο, ενώ αυτή είναι χαμηλή (0,7 HFU) στην Ανατολική.
Μεσόγειο. Τα βραχείας περίοδου σεισμικά κύματα υφίστανται έντονη απόσβεση κάτω από τη λιθόσφαιρα της ανατολικής Μεσογείου.

Η δομή του φλοιού είναι ηπειρωτική στο Αιγαίο και στις γύρω περιοχές σε αντίθεση με ότι συμβαίνει σε άλλες περιθωριακές θάλασσες (Ιαπωνική θάλασσα, κλπ) των οποίων ο φλοιός έχει οκεανία δομή. Μεγάλα πάχη φλοιού (40 – 47 km) έχουν παρατηρηθεί στο δυτικό μέρος της περιοχής, δηλαδή, κατά μήκος των ελληνίδων οροσειρών, ενώ το πάχος του φλοιού γίνεται κανονικό ηπειρωτικό (28 – 32 km) σε όλο το ανατολικό μέρος της περιοχής (ανατολική Ελλάδα, Αιγαίο, Δυτική Τουρκία) εκτός από την περιοχή της λεκάνης του Κρητικού πελάγους, όπου το πάχος του φλοιού είναι της τάξης των 20 km. της τάξης των 20 km. είναι και το πάχος του φλοιού στην ανατολική Μεσόγειο. (Παπαζάχος και Παπαζάχος 1999)

2.4. Διαχείριση και Αντιμετώπιση Σεισμών

Η σεισμική ιστορία μιας πόλης, η σεισμικότητα της περιοχής, οι έντονες τοπικές διαφοροποιήσεις των εδαφικών χαρακτηριστικών, η ποιότητα και η ποικιλία του κτηριακού αποθέματος, η εν γένει πολεοδομική ανάπτυξη της πόλης, σε συνδυασμό με ορισμένα εν δυνάμει ειδικά προβλήματα (έντονη κυκλοφοριακή συμφόρηση, έλλειψη ελευθέρων χωρών – εκτόνωση πληθυσμού), συνθέτουν την εικόνα ενός αστικού συγκροτήματος με έντονη επιρρέπεια σε πιθανή σεισμική απειλή.

Λόγω των παραπάνω, είναι αυτονόητο ότι γίνεται επιτακτική η ανάγκη διαμόρφωσης μιας στρατηγικής θεωρίας της πόλης από ενδεχόμενες σεισμικές καταστροφές και κυρίως μιας οργανωμένης πολιτικής προστασίας. Τα έργα, οι μελέτες αλλά και οι δραστηριότητες
αντισεισμικής πολιτικής συνιστούν και μία ένδειξη του επιπέδου ετοιμότητας της πόλης, αλλά και της ευαισθητοποίησης των εμπλεκομένων, φορέων και πληθυσμού, στο θέμα της αντισεισμικής προστασίας.

2.4.1. Αντισεισμικός και Πολεοδομικός Σχεδιασμός

Αντίθετα με άλλους φυσικούς κινδύνους, όπως οι πλημμύρες, φωτιές κλπ, ελάχιστα μπορούν να γίνουν στις περιπτώσεις σεισμών. Όλοι οι σεισμοί που έγιναν μέχρι σήμερα σε όλο το κόσμο έδειξαν ότι παρά τα μέτρα που λαμβάνονται είμαι εξαρτητικά αδύναμοι να τους αντιμετωπίσουμε. Μοναδικός τρόπος άμυνας για να αποτρέψουμε τα χειρότερα, είναι η σωστή προετοιμασία και η ετοιμότητα. Έτσι όσο πιο οργανωμένοι και προετοιμασμένοι είμαστε, τόσο πιο λίγες επιπτώσεις θα έχουμε σε ανθρώπινες ζωές και περιουσίες. Για το λόγο αυτό θα πρέπει να εφαρμόζεται ο αντισεισμικός – πολεοδομικός σχεδιασμός ο οποίος περιλαμβάνει τα παρακάτω επίπεδα:

2.4.2. Σχεδιασμός Προλήψης

Πρόκειται για σχεδιασμό, ο οποίος αφορά σε μεσοπρόθεσμο και μακροπρόθεσμο χαρακτήρα μέτρα και ρυθμίσεις που αποσκοπούν στη μείωση της τροικότητας. Με την έννοια τροπότητα εννοείται η τάση μιας περιοχής να εμφανίσει κάποιο ύψος απωλειών (όσον αφορά στο ανθρώπινο δυναμικό, στο κτηριακό απόθεμα, στις οικονομικές λειτουργίες κ.α.) όταν πληγεί
από καταστροφικό σεισμικό γεγονός δεδομένου μεγέθους. Στο σχεδιασμό πρόληψης
περιλαμβάνονται μέτρα και ρυθμίσεις που αφορούν στις κατασκευαστικές (αντισεισμικός
κανονισμός) και πληθυσμιακές πυκνότητες, στην κατανομή των λειτουργιών και χρήσεων γης (επιλογή χώρων καταφυγής στα έργα υποδομής κ.ά.)

2.4.3. Αντισεισμικός Κανονισμός

Ο Αντισεισμικός Κανονισμός είναι τεχνικός νόμος του κράτους και αποτελεί έναν από τους
θεμελιώδεις θεσμούς για την αντισεισμική άμυνα της χώρας. Αφορά στο σχεδιασμό των
κατασκευών, για την αντιμετώπιση του σεισμικού φαινομένου ενώ περιέχει υποχρεωτικές
dιατάξεις οι οποίες καθορίζουν.

- Τις ελάχιστες σεισμικές δράσεις σχεδιασμού και τους αντίστοιχους συνδυασμούς
dράσεων.
- Τις απαιτήσεις συμπεριφοράς για τους παραπάνω συνδυασμούς δράσεων, καθώς και τα
κριτήρια ελέγχου της ασφάλειας.
- Τις μεθόδους υπολογισμού της εντάσεως και παραμορφώσεως των κατασκευών
- τις ειδικότερες κατασκευαστικές διατάξεις.

Σύμφωνα με τον αντισεισμικό κανονισμό ο σχεδιασμός, η κατασκευή και η χρήση μιας
dομικής κατασκευής θα πρέπει να αντιμετωπίζουν επαρκώς το σεισμικό κίνδυνο, δηλαδή να
εξασφαλίσουν περιορισμένες και επιδιορθώσιμες βλάβες στα στοιχεία του φέροντα οργανισμού
από το σεισμό σχεδιασμού, ενώ να ελαχιστοποιούν τις βλάβες για σεισμούς μικρότερης έντασης.

Οι βασικοί στόχοι του κανονισμού είναι:

- Η πιθανότητα κατάρρευσης της κατασκευής είναι επαρκώς μικρή και συνδυάζεται με τη διατήρηση της ακεραιότητας και της επαρκούς εναπομένους αντοχής μετά τη λήξη της σεισμικής ακολουθίας.

- Οι βλάβες σε στοιχεία του φέροντος οργανισμού από το σεισμό σχεδιασμού είναι περιορισμένες και επιδιορθώσιμες, ενώ οι βλάβες για σεισμούς μικρότερης έντασης και με μεγαλύτερη πιθανότητα εμφάνισης ελαχιστοποιούνται.

- Διασφαλίζεται μια ελάχιστη στάθμη λειτουργιών της κατασκευής, ανάλογα με τη χρήση και τη σημασία της, όταν αυτή πληγεί από σεισμό με τα χαρακτηριστικά του σεισμού σχεδιασμού.

Όλοι οι Αντισεισμικοί Κανονισμοί που εφαρμόσθηκαν μέχρι σήμερα στη χώρα μας συνέβαλαν σημαντικότατα στην αντισεισμική της άμυνα προσφέροντας ολοένα και πιο σύγχρονες μεθόδους δόμησης αντισεισμικών κατασκευών. Αν και ένας καλός Αντισεισμικός Κανονισμός αποτελεί τη βάση της αντισεισμικής άμυνας κάθε σεισμογόνου χώρας, δε συνιστά την τελική και απόλυτη λύση στο πρόβλημα των σεισμών.

Η δόμηση των τεχνικών κατασκευών διέπεται και από άλλους κανονισμούς, όπως ο Γενικός Πολεοδομικός Κανονισμός, ο Κανονισμός Σκυροδέματος και ο Κανονισμός Πυροπροστασίας, ο κάθε ένας των οποίων εξυπηρετεί συγκεκριμένες ανάγκες στο σχεδιασμό, κατασκευή και λειτουργική συμπεριφορά του κτιρίου. Η βέλτιστη απόδοση του Αντισεισμικού Κανονισμού επιτυγχάνεται, όταν όλοι οι προβλεπόμενοι κανονισμοί είναι σύγχρονοι και έχουν εφαρμοστεί πιστά. Αυτό, όμως, δε συμβαίνει πάντα.
2.4.4. Χώροι Καταφυγής

Η βασική επιδίωξη είναι να βρεθεί ο μέγιστος αριθμός και η έκταση των ανοιχτών χώρων που παρέχουν ασφάλεια για την υποδοχή του πληθυσμού αμέσως μετά τις πρώτες δονήσεις. Όσο περισσότεροι χώροι βρεθούν και κριθούν ή διαμορφωθούν ως κατάλληλοι, τόσο το καλύτερο για τις προοπτικές προστασίας των σεισμοπλήκτων που δικαιολογημένα ή όχι θα εγκαταλείψουν τις κατοικίες τους.

Τέτοιοι χώροι είναι:

- Πλατείες και κενά οικόπεδα.
- Περιοχές αστικού πρασίνου (άλση, πάρκα)
- Ανοικτές αθλητικές εγκαταστάσεις
- Προαύλια εκκλησιών και γενικότερα περιβάλλοντες ασκεπείς χώροι κοινόχρηστων ή κοινωφελών εγκαταστάσεων
- Περιοχές του περιαστικού πρασίνου

Οι χώροι αυτοί θα πρέπει να βρίσκονται είτε εντός του αστικού ιστού και να προσεγγίζονται με τα πόδια μέσω εναλλακτικών πεζοδρομικών εκκένωσης, είτε να βρίσκονται γύρω από την πόλη και να προσεγγίζονται και με αυτοκίνητα μέσω εναλλακτικών οδικών διαδρομών εκκένωσης.
2.4.5. Σχεδιασμός Έκτακτης Ανάγκης (Ετοιμότητας – Ανακούφισης)

Πρόκειται για σχεδιασμό που αποσκοπεί στη στήριξή και το συντονισμό των ενεργειών, δράσεων και μέτρων που λαμβάνονται κατά την περίοδο της έκτακτης ανάγκης. Το εν λόγω επίπεδο σχεδιασμού διαρθρώνεται με βάση τρεις κατευθύνσεις παρέμβασης:

- Φυσική και Πολεοδομική οργάνωση
- Επιχειρησιακή οργάνωση
- Ενημέρωση υπηρεσιών – πληθυσμού

2.4.6. Σχεδιασμός Αποκατάστασης – Ανασυγκρότησης

Πρόκειται για σχεδιασμό ο οποίος αφορά στην περίοδο της ανασυγκρότησης και αποσκοπεί τόσο στη μείωση της σχετικής τρωτότητας, όσο και στη σύντομη επαναφορά της πόλης στα προ της καταστροφής επίπεδα. Μια βασική δηλαδή επιδίωξη είναι η επίτευξη υψηλών ρυθμών επισκευής και ανακατασκευής κατοικιών, έργων υποδομής, παραγωγικών μονάδων κ.ά.

Ο διαχωρισμός σε τρία επίπεδα σχεδιασμού δε σημαίνει ότι το κάθε επίπεδο (πρόληψη, ετοιμότητα, ανασυγκρότηση) θα πρέπει να λειτουργεί κατά τρόπο αυτόνομο από τ’ άλλα. Η συνολική μείωση του επιπέδου τρωτότητας της πόλης προϋποθέτει τη συμπληρωματική ενεργοποίηση όλως των επιπέδων σχεδιασμού και μάλιστα τόσο σε μάκρο κλίμακα (το σύνολο του αστικού συγκροτήματος), όσο και σε μίκρο κλίμακα (οικοδομικό τετράγωνο ή αστικές ενότητες).
Εικόνα 2: Χάρτης ζωνών σεισμικής επικινδυνότητας
2.5. Αποτελέσματα του σεισμού στον ίδιο τον άνθρωπο

Επιφανειακοί σεισμοί, μεγάλου μεγέθους, με το επίκεντρό τους κοντά σε κατοικημένες περιοχές προκαλούν συχνά σοβαρές και εκτεταμένες βλάβες σε κτίρια και τεχνικά έργα. Οι καταστροφές αυτές μερικές φορές έχουν σαν συνέπεια τραυματισμούς ή και απώλειες ανθρώπινων ζωών.

Σε παγκόσμιο επίπεδο τη δεκαετία 1994 - 2003 έχασαν τη ζωή του εξαιτίας των σεισμών 94.900 άνθρωποι και 38.452.000 επηρεάστηκαν από αυτούς.

Πίνακας 5: Σεισμοί με τις μεγαλύτερες απώλειες σε όλο τον κόσμο

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>Περιοχή</th>
<th>Ημερομηνία</th>
<th>Ανθρώπινες Απώλειες</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Σουμάτρα (Νησιά Ανταμάν) M=9,1</td>
<td>26-12-2004</td>
<td>283.106</td>
</tr>
<tr>
<td>2</td>
<td>Κίνα (Τανγκσάν) M=7,5</td>
<td>27-07-1976</td>
<td>255.000</td>
</tr>
<tr>
<td>3</td>
<td>Κίνα (Τίνγκαι) M=7,8</td>
<td>16-12-1920</td>
<td>200.000</td>
</tr>
<tr>
<td>4</td>
<td>Ιαπωνία (Κάντο) M=7,9</td>
<td>01-09-1923</td>
<td>142.800</td>
</tr>
<tr>
<td>5</td>
<td>Σοβ. Ένωση (Τουρκμενιστάν) M=7,3</td>
<td>05-10-1948</td>
<td>110.000</td>
</tr>
</tbody>
</table>
Εκτός όμως από τον τραυματισμό ή ακόμα και το θάνατο ανθρώπων κατά τη διάρκεια μιας σεισμικής δόνησης, θέμα προβληματισμού αποτελεί και η στάση και η συμπεριφορά του πληθυσμού τόσο την ώρα του σεισμού όσο και κατά τη μετασεισμική περίοδο. Πολλοί άνθρωποι πανικοβάλλονται σε περίπτωση σεισμού και οδηγούνται σε εσφαλμένες επιλογές. Άνθρωποι πηδούν από μπαλκόνια, μπαίνουν σε ανελκυστήρες και εγκλωβίζονται μέσα σε αυτούς, συνωστίζονται σε εξόδους κτιρίων, κ.ά. Τέτοιοι είδους επιλογές έχουν δυσάρεστα, σε κάποιες περιπτώσεις αποτελέσματα, όπως τραυματισμούς ή θανάτους που θα μπορούσαν να αποφευχθούν έχοντας μία πιο πειθαρχημένη συμπεριφορά.

Κατά τη διάρκεια της μετασεισμικής περιόδου οι σεισμόπληκτοι νιώθουν ανασφάλεια κυρίως γιατί το σπίτι τους, που αποτελούσε το καταφύγιο τους, δεν μπορεί να τους προσφύγει πια, ενώ πολλές φορές γίνεται χώρος εχθρικός αφού εγκυμονεί κινδύνους για τη ζωή και την ασφάλειά τους.

Ο φόβος για το άγνωστο (επικείμενος μεγάλος σεισμός), το αίσθημα του τρόμου, ο πανικός, η αναστάτωση, η νευρική υπερηχέρση, η ανασφάλεια αλλά και η απογοήτευση, είναι συνήθη συναισθήματα για ανθρώπους που βίωσαν καταστρεπτικό σεισμό, ιδίατέρα εάν οι ζημιές είναι εκτεταμένες και υπάρχει μεγάλη μετασεισμική ακολουθία. Συναισθήματα και προβληματισμοί που δύσκολα αποβάλλονται ακόμα και μετά την επαναφορά της καθημερινότητας. Συνήθως, περνά μεγάλο χρονικό διάστημα έως ότου τα άτομα αυτά να καταφέρουν να επανέλθουν στην προ του σεισμού ψυχική τους κατάσταση.
Επιπρόσθετα, η άγνωστη δημιουργεί πρόσφορο έδαφος στην ανάπτυξη φημολογίας σχετικά με την εξέλιξη της κατάστασης (π.χ. επερχόμενος πιο ισχυρός σεισμός, φοβερές καταστροφές, κ.λπ.). Κάτι τέτοιο όχι μόνο δε βοηθά στην ανάπτυξη ήρεμου κλίματος και στην επαναφορά της καθημερινότητας, αντίθετα δημιουργεί ανασφάλεια και ψυχολογική πίεση.

Χαρακτηριστικό παράδειγμα αποτελεί η περίπτωση του σεισμού της Πάρνηθας στις 7-9-1999, όπου υπήρξε έξαρση φημολογιών για νέο ισχυρό σεισμό, προκαλώντας σύγχυση και πανικό στους πληγέντες. Απαραίτητη, για την όσο το δυνατόν πιο γρήγορη ομαλοποίηση της κατάστασης, είναι η πληροφόρηση από έγκυρες - αξιόπιστες πηγές (Πολιτεία - αρμόδιοι φορείς).

Στις επιπτώσεις του σεισμού περιλαμβάνονται και η εκδήλωση ασθενειών καθώς και η εξάπλωση επιδημιών (συνήθης κυρίως παλαιότερα) στις σεισμόπληκτες περιοχές. Οι αιτίες μπορεί να είναι διάφορες:

- μη τήρηση κανόνων υγιεινής στις σκηνές και στους καταυλισμούς (αιτίες: έλλειψη τρεχούμενου νερού, μη δυνατότητα άμεσης αποκομιδής απορριμμάτων κ.λπ.) - κατανάλωση αλλοιωμένων τροφίμων (αιτίες: κακή συντήρηση, ακατάλληλες πρώτες ύλες)
- κατανάλωση ή χρήση μη πόσιμου νερού (αιτίες: βλάβες στο δίκτυο ύδρευσης, κ.ά.).
2.5.1. Τα αποτελέσματα του σεισμού στα έργα του ανθρώπου

Τα αποτελέσματα και οι βλάβες που προκαλεί μία σεισμική δόνηση στις κατασκευές εξαρτώνται από διάφορες παραμέτρους όπως:

- το μέγεθος του σεισμού,
- το βάθος της εστίας,
- τη θέση του επικέντρου,
- την απόσταση της εστίας από τον τόπο παρατήρησης,
- το μέσο διάδοσης των σεισμικών κυμάτων,
- το έδαφος θεμελίωσης αλλά και από
- τα ποιοτικά χαρακτηριστικά (τροπότητα κατασκευής) και από
- τις ιδιότητες των ίδιων των κατασκευών.

Μετά από ένα σεισμό συχνά προκαλούνται βλάβες:

- στα κτίρια,
- σε κατοικίες,
- στα ιστορικά μνημεία,
- σε δημόσια κτίρια
- σε χώρους συνάθροισης κοινού, όπως: εκκλησίες, σχολεία, γήπεδα, θέατρα, γυμναστήρια, στρατόπεδα, εργοστάσια.
- στο οδικό - σιδηροδρομικό δίκτυο καθώς και
- στα δίκτυα ύδρευσης - τηλεπικοινωνιών - ηλεκτρικού - φυσικού αερίου
Εάν κατά το χρόνο εκδήλωσης της σεισμικής δόνησης είναι συγκεντρωμένα πολλά άτομα στους χώρους αυτούς είναι πιθανό να προκληθούν τραυματισμοί ή και θάνατοι σε μεγάλη κλίμακα.

Οι βλάβες στα δίκτυα τηλεπικοινωνιών, ηλεκτρικού, φυσικού αερίου και ύδρευσης δυσκολεύουν τη ζωή των σεισμόπληκτων και ταυτόχρονα δυσχεραίνουν τις ομάδες έκτακτης ανάγκης στη διάσωση και στην παροχή βοήθειας.

Πιο συγκεκριμένα, οι βλάβες στο δίκτυο τηλεπικοινωνιών απομονώνουν τη σεισμόπληκτη περιοχή από τις υπόλοιπες. Πρόβλημα δημιουργείται καταρχήν στις διασωστικές ομάδες που δεν μπορούν να έχουν άμεση επικοινωνία με τα κέντρα επιχειρήσεων ή τους αρμόδιους φορείς για το συντονισμό των ενεργειών τους. Παράλληλα οι σεισμόπληκτοι που είναι τραυματισμένοι ή εγκλωβισμένοι δεν μπορούν να επικοινωνήσουν με τις ομάδες παροχής βοήθειας. Οι κάτοικοι της πληγείσας περιοχής δεν μπορούν να επικοινωνήσουν με συγγενικά τους πρόσωπα ώστε να τα καθησυχάσουν και ταυτόχρονα να μάθουν για τη δική τους κατάσταση.

Οι βλάβες στο δίκτυο του ηλεκτρικού ρεύματος μπορεί να προκαλέσουν πυρκαγιές καθώς και τραυματισμούς ή θανάτους (ηλεκτροπληξίες από κομμένα καλώδια). Δυσχεραίνουν έτσι, τις εργασίες των ομάδων διάσωσης και ταυτόχρονα εντείνουν το αίσθημα ανασφάλειας, που έτσι και αλλιώς υπάρχει στους σεισμόπληκτους.

Οι βλάβες στο δίκτυο ύδρευσης οδηγούν τους πληγέντες σε καταστροφήση βασικών κανόνων υγεινής με όλα τα συνεπεκόλουθα προβλήματα (χρήση μη πόσιμου νερού ως πόσιμο και εξάπλωση επιδημιών).
Οι βλάβες ή οι καταστροφές οδικών αρτηριών, σιδηροδρομικών γραμμών, γεφυρών ή λιμανιών εκτός από τραυματισμούς και θανάτους προκαλούν και πολλά προβλήματα πρόσβασης στις πληγείσες περιοχές. Πιο συγκεκριμένα, δημιουργούνται προβλήματα που σχετίζονται με δυσκολίες πρόσβασης και παροχής βοήθειας στους σεισμόπληκτους, αλλά και με επιπτώσεις στην οικονομία της πληγείσας περιοχής.

Σημαντικές είναι πολλές φορές οι βλάβες από σεισμό και στα ιστορικά μνημεία που αποτελούν άλλωστε την πολιτιστική κληρονομιά της κάθε χώρας ή της κάθε περιοχής. Στην Ελλάδα αλλά και σε ξένες χώρες έχουν αναφερθεί πολλές περιπτώσεις καταστροφής τέτοιων μνημείων, όπως αρχαίων πόλεων, εκκλησιών, αρχοντικών και αγαλμάτων.

Οι πυρκαγιές είναι σύνηθες επακόλουθο της σεισμικής δράσης και σε αρκετές περιπτώσεις προκαλούν πολύ περισσότερα προβλήματα και καταστροφές από τον ίδιο το σεισμό. Οφείλονται συνήθως σε διαρροές φυσικού αερίου - φωταερίου - υγραερίου, σε ανάφλεξη καυσίμων υλικών (π.χ. πετρέλαιο), καθώς και σε δημιουργία βραχυκυκλωμάτων. Στο σεισμό (Μ=7,1) που έπληξε τα Ιόνια νησιά το 1636 η πυρκαγιά που εκδηλώθηκε στη Ζάκυνθο (Κάστρο) συμπλήρωσε την καταστροφή που προκάλεσε ο σεισμός. Σε ξένες χώρες υπάρχουν πολλές περιπτώσεις εκδήλωσης πυρκαγιών μετά από σεισμό με καταστρεπτικές συνέπειες όπως π.χ. στο San Francisco το 1906, και στο Kobe το 1995.

Οι πλημμύρες μπορεί να οφείλονται σε βλάβες στα δίκτυα ύδρευσης, σε καταστροφές φραγμάτων, σε αλλαγή κοίτης ποταμών, σε θαλάσσια κύματα βαρύτητας (tsunamis).
2.6. Οι οικονομικές συνέπειες

Οι οικονομικές συνέπειες των σεισμών σχετίζονται είτε με:

- τις βλάβες στις κατασκευές είτε με
- τη διαφοροποίηση των συνθηκών διαβίωσης των πληγέντων.

Στην πρώτη περίπτωση εντάσσονται οι επιπτώσεις που αφορούν απώλειες κατοικιών - εργασιακών χώρων ή γενικότερα μέρους της ακίνητης και κινητής (οικιακός εξοπλισμός, αυτοκίνητο) περιουσίας των σεισμόπληκτων.

Στη δεύτερη περίπτωση εντάσσονται οι επιπτώσεις από την αποδιοργάνωση της καθημερινής ζωής. Μετά από ένα σεισμό δημιουργούνται νέες συνθήκες στην εργασία και γενικότερα στη διαβίωση με όλα τα συνεπακόλουθα προβλήματα. Οι κάτοικοι των περιοχών που έχουν πληγεί δεν μπορούν να εργαστούν τουλάχιστον το πρώτο χρονικό διάστημα είτε εξαιτίας τραυματισμών είτε λόγω αναστολής των επαγγελματικών τους δραστηριοτήτων λόγω του σεισμού. Συχνά, τα κτήρια στα οποία στεγάζονται επιχειρήσεις ή δημόσιες υπηρεσίες έχουν υποστεί βλάβες και δεν είναι δυνατόν να επανεκτιμηθούν άμεσα.

Επίσης, τις περισσότερες φορές υπάρχει, έστω και για μικρό χρονικό διάστημα, διακοπή των εκπαιδευτικών, πολιτιστικών και άλλων δραστηριοτήτων.

Επιπρόσθετα, στην ευρύτερη πληγείσα περιοχή παρατηρείται μείωση των ευκαιριών απασχόλησης, αύξηση των απολύσεων, μείωση της αξίας της ακίνητης περιουσίας, έξαρση των εξόδων καθώς και κατακόρυφη αύξηση των ενοικίων.
Είναι φανερό λοιπόν, ότι οι βλάβες που προέρχονται από σεισμούς, είτε σχετίζονται με την απώλεια κινητής ή ακίνητης περιουσίας είτε με την αποδιοργάνωση της καθημερινότητας, συνεπάγονται ένα τεράστιο οικονομικό κόστος, σε ατομικό, οικογενειακό και εθνικό επίπεδο.

Σύμφωνα με στατιστικά στοιχεία οι οικονομικές επιπτώσεις των σεισμών, για την Ελλάδα ανά δεκαετία, ανέρχονται σε 590 εκατ. ευρώ περίπου (200 δίσεκ. δραχμές). Όμως ο ιδιαίτερα καταστροφικός σεισμός στην Αθήνα το 1999 έδειξε ότι μερικές φορές αναθεωρούνται τα δεδομένα.

Αμέσως μετά από κάθε καταστροφικό σεισμό ξεκινά η οργανωμένη προσπάθεια της Πολιτείας και των αρμόδιων φορέων για άμεση ανασυγκρότηση των σεισμόπληκτων περιοχών και για επαναφορά της καθημερινότητας. Κάτι τέτοιο μπορεί να επιτευχθεί με τη διανομή τροφίμων και νερού, την άμεση στέγαση (σκηνές - καταυλισμοί) ή την προσφορή (μεταφερόμενοι οικισμοί, επιδότηση ενοικίου) στέγαση των σεισμόπληκτων, τη χορήγηση δανείων για απόκτηση νέας κατοικίας με όσο το δυνατόν πιο ευνοϊκό; όρους, την προσφορά εργασίας στους σεισμόπληκτους, τη συνέχιση της εκπαιδευτικής δραστηριότητας, την άμεση επαναλειτουργία δημοσίων υπηρεσιών ακόμα και σε σκηνές κ.α.
3. ΧΑΡΤΟΓΡΑΦΙΑ ΚΑΙ ΦΥΣΙΚΕΣ ΚΑΤΑΣΤΡΟΦΕΣ

Η ρεαλιστική αναπαράσταση της γεώσφαιρας αποτέλεσε από την αρχαιότητα το κύριο ζητούμενο για την επιστήμη της Χαρτογραφίας. Η επιστήμη αυτή περιλαμβάνει ένα σύνολο προσδιορισμένων μελετών, τεχνικών ακόμη και καλλιτεχνικών εργασιών που αφορούν απεικόνισεις, υπό κλίμακα, της επιφάνειας της Γης για την σύνταξη και έκδοση χαρτών.

Η χαρτογραφία αποτελεί το σημαντικότερο κομμάτι της επιστήμης της Γεωγραφίας αφού οι χάρτες είναι τα κυριότερα μέσα παρουσίασης και μελέτης των γεωγραφικών δεδομένων.

Τα κύρια στάδια για την παραγωγή ενός χάρτης είναι: συλλογή/επιλογή δεδομένων, διαχείριση και γενίκευση δεδομένων, σχεδίαση χάρτη, ανάγνωση χάρτη και ερμηνεία χάρτη. Ο χαρτογράφος είναι ο κύριος παράγοντας, από τον οποίο εξαρτάται το τελικό προϊόν. Στο παρελθόν η γνώση για την συλλογή και την επεξεργασία των δεδομένων ήταν περιορισμένη. Σήμερα η γνώση και η κατοχή όσο το δυνατόν περισσότερων γεωγραφικών πληροφοριών, σημαίνει δύναμη στα πλαίσια μια παγκόσμιας κοινωνίας. Η ψηφιακή μορφή στην οποία βρίσκονται τα δεδομένα είναι άρρητα συνδεδεμένα με άλλες τεχνολογίες όπως οι βάσεις γεωγραφικών δεδομένων, τα λογισμικά γεωγραφικών συστημάτων πληροφοριών (ΣΓΠ) ή ακόμα και λογισμικά που συνδέονται με δορυφορικές εικόνες.

Σημαντική πληροφορία για τον παραγωγό χαρτών, είναι για ποιον προορίζετε ο χάρτης. Αυτό σημαίνει ότι το στήσιμο του χάρτη κάθε φορά αλλάζει ανάλογα τον τελικό χρήστη. Παράδειγμα χρηστών αποτελούν οι διάφορες υπηρεσίες σε δημόσιο και ιδιωτικό τομέα, υπουργεία, η πυροσβεστική, ο στρατός, τα διάφορα ερευνητικά προγράμματα γεωγραφίας και ΓΣΠ, κοκ.
3.1. Ιστορική εξέλιξη της Χαρτογραφίας

Η κατασκευή χαρτών είναι μία από τις αρχαίτερες δραστηριότητες του ανθρώπου. Σύμφωνα με τους αρχαιολόγους τα παλιότερα σχέδια που έχουν βρεθεί και που θα μπορούσαν να χαρακτηριστούν χάρτες χρονολογούνται ακόμη και 30.000 χρόνια πριν. Έχουν δε βρεθεί χαραγμένα σε σπηλιές, σε κομμάτια οστράκου ή σε κομμάτια οστών.

Ένα σημαντικότατο εύρημα της προϊστορικής περιόδου είναι ο χάρτης που βρέθηκε στον οικισμό του Τσατάλ Χογιούκ της Τουρκίας και χρονολογείται γύρω στο 7500 π.Χ.. Ο χάρτης έχει τη μορφή τουχογραφίας, έχει μήκος περίπου 3 μέτρα και απεικονίζει τον οικισμό σε κάτωγη καθώς και ένα γεωτόπικο ηφαίστειο. Κάτι ιδιαίτερα αξιοσημείωτο σχετικά με τον χάρτη αυτόν είναι η συμφωνία των όσων απεικονίζονται στον χάρτη με τα ευρήματα των αρχαιολογικών ανασκαφών.

Μια σημαντική εξέλιξη στην χαρτογραφία υπήρξε η εμφάνιση της γεωμετρίας. Αλλάζει η λέξη "γεωμετρία" είχε αρχικά την έννοια της "μέτρησης της γης".

Τα πρώτα δείγματα χαρτών που φαίνεται να κατασκευάστηκαν με τη χρήση κάποιων αρχών γεωμετρίας προέρχονται από την Βαβυλώνα. Τα σημαντικότερα ευρήματα εκείνης της περιόδου είναι ένα διάγραμμα που παρουσίαζε τα τέσσερα σημεία του ορίζοντα (2300 π.Χ.) και ένας χαραγμένος χάρτης της ιερής πόλης Νιππόυρ (14ος -12ος αιώνας π.Χ.).

Αξιολόγηση ευρήματα προέρχονται ακόμα από την περιοχή της Αιγύπτου. Οι "Τοπογράφοι" της εποχής έπρεπε κάθε φορά μετά τις πλημμύρες που Νείλου να επαναπροσδιορίζουν τα όρια των ιδιοκτησιών στο έδαφος. Η ανάγκη για ακρίβεια ύστερα τους Αρχαίους Αιγυπτίους στη σχετική με την επινόηση τεχνικών που έδιναν αρκετά αξιόλογη ακρίβεια. Ωστόσο δεν έχουν βρεθεί δείγματα
χαρτών, παρά μόνο σχέδια μεμονωμένων αγροτεμαχίων, με μία σημαντικότατη εξαίρεση: τον
Πάπυρο του Τορίνο. Στον πάπυρο αυτό, που χρονολογείται στο 1300 π.Χ., απεικονίζονται οι
θέσεις εξόρυξης χρυσού και Αργύρου στις περιοχές μεταξύ του Νείλου και της Ερυθράς
θάλασσας. Σημειώνονται ακόμα οι θέσεις διαμονής των εργατών, δρόμοι κ.ά.. Ο χάρτης αυτός
μπορεί κατά πολλούς να θεωρηθεί ο πρώτος γεωλογικός χάρτης της
ιστορίας.(www.wikipedia.gr)

Οι αρχαίοι Έλληνες, ως προπάτορες της χαρτογραφίας, ήταν οι πρώτοι που επινόησαν ένα
gεωμετρικό σύστημα αναφοράς (γεωμετρικούς μεσημβρινούς και παράλληλους), για τον
προσδιορισμό θέσεων, σχεδόν 2 αιώνες π.Χ. Σημαντικό σημείο της ελληνικής χαρτογραφίας
έχει όταν ο Πτολεμαίος ο Αλεξάνδρεας (90-188μ.Χ.) μας δίνει την μνημειώδη Γεωγραφία του
με την περιγραφή 8000 σημείων που αποδόθηκε στον αντίστοιχο χάρτη του που παριστάνει τον
τότε γνωστό κόσμο.

Κατά την περίοδο της Αναγέννησης τα βασικότερα γεγονότα που συντέλεσαν στη εξέλιξη της
χαρτογραφίας είναι:

- Η ανακάλυψη από τους Ιταλούς Ουμανιστές της Γεωγραφίας του Πτολεμαίου που είχε
 μεταφραστεί στα λατινικά σε μοναστήρι του Αγίου Όρους γύρω στο 1144.
- Η εισαγωγή της Τοπογραφίας στην παραγωγή χαρτών που επέτρεψαν την διάδοση της
 χαρτογραφίας
- Οι Μεγάλες ανακάλυψεις που θεμελίωσαν την αναγκαιότητα των χαρτών σαν
 πρωταρχικό στοιχείο ανθρώπινης δραστηριότητας και επικοινωνίας.
Τέλος με την πάροδο των χρόνων καθώς εξελίσσονται και άλλες επιστήμες όπως τα μαθηματικά (δημιουργία χαρτογραφικών καννάβων), οι τηλεπικοινωνίες, η λιθογραφία και η φωτογραφία, η χαρτογραφία θα γνωρίσει μεγάλη άνθιση, δίνοντας την ευκαιρία στον άνθρωπο να κατανοήσει και να ερμηνεύσει καλύτερα τα διάφορα φαινόμενα τόσο χωρικά όσο και χρονικά.

3.2. Γεωγραφικά Συστήματα Πληροφοριών

Κύριος στόχος των Σ.Γ.Π. είναι ο χωρικός σχεδιασμός, χρησιμοποιούνται δηλαδή μέσα από πολλές προσεγγίσεις στην διατύπωση και αξιολόγηση πολιτικών και προγραμμάτων που αναφέρονται στο φυσικό ή περιβαλλοντικό σχεδιασμό, από τοπικό μέχρι εθνικό επίπεδο. Κύριο χαρακτηριστικό των συστημάτων αυτών είναι η διάθεση μιας σειράς εργαλείων που χρησιμεύουν στο μετασχηματισμό στοιχείων.

Οι λειτουργίες ενός Σ.Γ.Π. είναι: α) αποθηκεύει, ενσωματώνει, διαχειρίζεται ένα μεγάλο όγκο χωρικών δεδομένων, β) είναι το κατάλληλο εργαλείο χωρικής ανάλυσης, εστιαζόμενο κύρια στη χωρική διάσταση των στοιχείων, γ) επιλέει χωρικά προβλήματα με βάση την οργάνωση, διαχείριση και μετασχηματισμό μεγάλου όγκου στοιχείων έτσι ώστε να παρέχονται προσιτές πληροφορίες.

Η αντιμετώπιση των φυσικών καταστροφών απαιτεί τη συνεχή χρήση μεγάλου αριθμού πληροφοριών που μεταβάλλονται δυναμικά. Τα τελευταία χρόνια τα ΣΓΠ συλλέγουν, αποθηκεύουν, αναλύουν και παρουσιάζουν γεωγραφικά δεδομένα του περιβάλλοντος τα οποία
γίνονται διαθέσιμα με αποτελεσματικό και οικονομικό τρόπο και διευκολύνουν την ανάπτυξη νέων και αξιόπιστων μοντέλων για την περιγραφή των διαδικασιών και των παράγοντων που οδηγούν σε διάφορα καταστροφικά γεγονότα.

Συνεπώς καταλαβαίνουμε ότι τα πλεονεκτήματα και τα οφέλη των ΣΓΠ στην αντιμετώπιση των φυσικών καταστροφών είναι:

- Παροχή βοήθειας για την ορθολογική λήψη αποφάσεων στη διαχείριση αντιμετώπισης έκτακτων φυσικών καταστροφών λόγω των τεράστιων αναλυτικών δυνατοτήτων που παρέχουν.

- Ουσιαστικές αναλύσεις πολλαπλών μεταβλητών στο γεωγραφικό χώρο.

- Σύγκριση διαφόρων εναλλακτικών σεναρίων, χωρίς να υπάρχει το οικονομικό και οικολογικό κόστος εκτέλεσης. (Καλαμποκίδης 2008)

Σκοπός της παρούσας εργασίας είναι η χαρτογραφική απεικόνιση των σημαντικότερων σεισμών και πυρκαγιών που παρουσίαστηκαν στον ελλαδικό χώρο τις χρονικές περιόδους 2003 έως 2009 και 2005 έως 2010 αντίστοιχα, καθώς και τις επιπτώσεις τους στο φυσικό και ανθρωπογενές περιβάλλον. Ακόμα γίνετε αναφορά στα αίτια εμφάνισης των σεισμών και των πυρκαγιών, στους παράγοντες που συμβάλουν σε αυτό, αλλά και στα μετα διαχείριση και αντιμετώπισης τους.

Τα δεδομένα που χρησιμοποιήθηκαν για την παραγωγή θεματικών χαρτών ώστε να αποδώσουμε τα δύο φαινόμενα χωρικά και χρονικά, μας παραχωρήθηκαν από το Εργαστήριο Χαρτογραφίας και Γεωπληροφορικής και το Εργαστήριο Γεωγραφίας Φυσικών Καταστροφών.
του τμήματος Γεωγραφίας του Πανεπιστημίου Αιγαίου. Η επεξεργασία των δεδομένων έγινε με την χρήση των υπολογιστικών προγραμμάτων ArcGis 9.3 και Google Earth.

4. ΠΕΡΙΟΧΗ ΜΕΛΕΤΗΣ

Η Ελλάδα (παλαιότερα: Ελλάς, επίσημα: Ελληνική Δημοκρατία) είναι χώρα που βρίσκεται στη νοτιοανατολική Ευρώπη, στο νοτιότερο άκρο της Βαλκανικής χερσονήσου, στην Ανατολική Μεσόγειο. Συνορεύει στα βόρεια με τη Βουλγαρία και την Πρώην Γιουγκοσλαβική Δημοκρατία της Μακεδονίας (Π.Γ.Δ.Μ.), στα βορειοδυτικά με την Αλβανία και στα βορειοανατολικά με την Τουρκία. Βρέχεται ανατολικά από το Αιγαίο Πέλαγος, στα δυτικά από το Ιόνιο και νότια από τη Μεσόγειο θάλασσα. Έχει μακρά και πλούσια ιστορία κατά την οποία άσκησε μεγάλη πολιτισμική επίδραση σε τρεις ηπείρους. Η Ελλάδα είναι μια ανεπτυγμένη χώρα με υψηλό κατά κεφαλήν εισόδημα και πολύ υψηλό δείκτη ανθρώπινης ανάπτυξης. Η Ελλάδα κατέχει την 22η καλύτερη ποιότητα ζωής στον κόσμο.

4.1. Γεωγραφία

Η Ελλάδα αποτελείται από ένα μεγάλο ηπειρωτικό τμήμα, το νότιο άκρο των Βαλκανίων, το οποίο ενώνεται με την πρώην ηπειρωτική Πελοπόννησο με τον Ισθμό της Κορίνθου, αφού η Πελοπόννησος μετά την κατασκευή της διώρυγας της Κορίνθου είναι στην πραγματικότητα νησί. Η χώρα περικλείεται από το Ιόνιο, το Αιγαίο και το Λιβυκό Πέλαγος. Το Αιγαίο περιέχει πολυάριθμα νησιά, ανάμεσά τους την Εύβοια, τη Λέσβο, τη Ρόδο και τα νησιωτικά συμπλέγματα των Κυκλάδων και των Δωδεκανήσων, ενώ νότια βρίσκεται η Κρήτη, το
μεγαλύτερο νησί της Ελλάδας και το πέμπτο μεγαλύτερο της Μεσογείου. Νότια της Κρήτης
eίναι η Γαύδος, το νοτιότερο νησί της Ελλάδας και συνόρια της Ευρώπης. Τα κυριότερα νησιά
tου Ιονίου είναι η Κέρκυρα, η Κεφαλονιά, η Λευκάδα και η Ζάκυνθος. Η Ελλάδα έχει μήκος
ακτών 13.676 χιλιόμετρα, που θεωρείται εξαιρετικά μεγάλο, και οφείλεται στον πλούσιο
οριζόντιο εδαφικό διαμελισμό και το έντονο ανάγλυφο της περιοχής, καθώς και στο πλήθος των
αναρίθμητων νησιών, τα οποία είναι περισσότερα από 1500 και είναι κυρίως αποτέλεσμα της
σύγκρουσης της Αφρικανικής τεκτονικής πλάκας με την Ευρωπαϊκή. Έχει μήκος συνόρων που
πλησιάζει τα 1.228 χιλιόμετρα.

Το έδαφος της Ελλάδας είναι κατά κύριο λόγο ορεινό ή λοφώδες. Μεγάλο μέρος του είναι
ξηρό και βραχώδες, ενώ μόνο το 20,45% του εδάφους είναι καλλιεργήσιμο.

4.2. Κλίμα

Η Ελλάδα χαρακτηρίζεται από το μεσογειακό τύπο του εύκρατου κλίματος και έχει ̈ήπιους
υγρούς χειμώνες και ξεστά ξηρά καλοκαίρια. Το κλίμα της χώρας μπορεί να διαιρεθεί σε
tέσσερις βασικές κατηγορίες:

- υγρό μεσογειακό (δυτική Ελλάδα, δυτική Πελοπόννησος, πεδινά και ημιορεινά της
 Ηπείρου)
- ξηρό μεσογειακό (Κυκλάδες, παραλιακή Κρήτη, Δωδεκάνησα, ανατολική
 Πελοπόννησος, Αττική, πεδινές περιοχές Ανατολικής Στερεάς)
• ηπειρωτικό (δυτική Μακεδονία, εσωτερικά υψώματα ηπειρωτικής Ελλάδας, βόρειος Έβρος)

• ορεινό (ορεινές περιοχές με υψόμετρο περίπου >1500μ στη βόρεια Ελλάδα, >1800μ στην κεντρική Ελλάδα και >2000μ στην Κρήτη).

Οι θερμοκρασίες είναι σπάνια υπερβολικές στις παραθαλάσσιες περιοχές. Στις κλειστές εσωτερικές πεδιάδες και στα υψώματα της χώρας παρατηρούνται τα μεγαλύτερα θερμοκρασιακά εύρη -τόσο επίσης όσο και ημερήσια. Οι χιονοπτώσεις είναι κοινές στα ορεινά από τα τέλη Σεπτεμβρίου (στη βόρεια Ελλάδα, τέλη Οκτωβρίου κατά μέσο όρο στην υπόλοιπη χώρα), ενώ στις πεδινές περιοχές χιονίζει κυρίως από το Δεκέμβριο μέχρι τα μέσα Μαρτίου. Έχει χονίσει, πάντως, ακόμα και κατά μήνα Μάιο στη Φλώρινα. Στις παραθαλάσσιες περιοχές των νησιωτικών περιοχών οι χιονοπτώσεις συμβαίνουν σπανιότερα και δεν αποτελούν βασικό χαρακτηριστικό του κλίματος. Οι καύσωνες επηρεάζουν κυρίως τις πεδινές περιοχές και είναι συχνότεροι τον Ιούλιο και τον Αύγουστο. Σπάνια, πάντως, διαρκούν περίσσοτερες από 3 μέρες.

Η Ελλάδα βρίσκεται μεταξύ των παραλλήλων 34ου και 42ου του βορείου ημισφαίριο και έχει μεγάλη ηλιοφάνεια όλο σχεδόν το χρόνο. Λεπτομερέστερα στις διάφορες περιοχές της Ελλάδας παρουσιάζεται μεγάλη ποικιλία κλιματικών τύπων, πάντα βέβαια μέσα στα πλαίσια του μεσογειακού κλίματος. Αυτό οφείλεται στην τοπογραφική διαμόρφωση της χώρας που έχει μεγάλες διαφορές υψομέτρου (υπάρχουν μεγάλες οροσειρές κατά μήκος της κεντρικής χώρας και άλλοι ορεινοί όγκοι) και εναλλαγή ξηράς και θάλασσας. Έτσι, από το ξηρό κλίμα της Αττικής και γενικά της ανατολικής Ελλάδας μεταπίπτουμε στο υγρό της βόρειας και δυτικής Ελλάδας. Τέτοιες κλιματικές διαφορές συναντώνται ακόμη και σε τόπους που βρίσκονται σε
μικρή απόσταση μεταξύ τους, πράγμα που παρουσιάζεται σε λίγες μόνο χώρες σε όλο τον κόσμο.

Από κλιματολογικής πλευράς το έτος μπορεί να χωρίστει κυρίως σε δύο εποχές: Την ψυχρή και βροχερή χειμερινή περίοδο, που διαρκεί από τα μέσα του Οκτωβρίου και μέχρι το τέλος Μαρτίου και τη θερμή και άνοιξη εποχή, που διαρκεί από τον Απρίλιο έως τον Οκτώβριο.

Κατά την πρώτη περίοδο οι ψυχρότεροι μήνες είναι ο Ιανουάριος και ο Φεβρουάριος, όπου κατά μέσον όρο η μέση ελάχιστη θερμοκρασία κυμαίνεται από 5-10 °C στις παραθαλάσσιες περιοχές, από 0-5 °C στις ηπειρωτικές περιοχές και σε χαμηλότερες τιμές κάτω από το μηδέν στις βόρειες περιοχές.

Οι βροχές ακόμη και τη χειμερινή περίοδο δεν διαρκούν για πάρα πολλές ημέρες και ο ουρανός της Ελλάδας δεν μένει συνεννομένος καθόλη τη διάρκεια του χειμώνα, όπως συμβαίνει σε άλλες περιοχές της γης. Οι χειμερινές κακοκαιρίες διακόπτονται καμία φορά κατά τον Ιανουάριο και το πρώτο δεκαπενήμερο του Φεβρουαρίου από ηλιόλουστες ημέρες, τις γνωστές από την αρχαιότητα Αλκυονίδες ημέρες. Κατά αυτήν την περίοδο, λοιπόν, στα νησιά, κυρίως στο νότιο μέρος της χώρας, όπως για παράδειγμα στην Κρήτη, η θερμοκρασία μπορεί να ξεπεράσει τους 18-20 βαθμούς Κελσίου, στην Αττική τους 13-14 βαθμούς και στη Θεσσαλονίκη ο υδράργυρος μπορεί να ξεπεράσει τους 9 και πολλές φορές ακόμα και τους 10 βαθμούς Κελσίου. Σε άλλες πόλεις, όπως ας πούμε στην Αλεξανδρούπολη κατά τις Αλκυονίδες μέρες, η θερμοκρασία ξεπερνάει τους 7-8 βαθμούς Κελσίου, με αποτέλεσμα οι συνεχόμενες χιονοπτώσεις του χειμώνα να λιώνουν κατά τη διάρκεια της ημέρας.

Η χειμερινή εποχή είναι γλυκύτερη στα νησιά του Αιγαίου και του Ιονίου από ό,τι στη Βόρεια και Ανατολική ηπειρωτική Ελλάδα. Κατά τη θερμή και άνοιξη εποχή ο καιρός είναι
σταθερός, ο ουρανός σχεδόν αίθριος, ο ήλιος λαμπερός και δε βρέχει εκτός από σπάνια
dιαστήματα με ραγδαίες βροχές ή καταιγίδες μικρής γενικά διάρκειας.

Η θερμότητα περίοδος είναι το τελευταίο δεκαήμερο του Ιουλίου και το πρώτο του
Αυγούστου, οπότε η μέση μέγιστη θερμοκρασία κυμαινείται από 33 °C μέχρι 39 °C. Κατά τη
θερμή εποχή οι υψηλές θερμοκρασίες μετρίζονται από τη δροσερή θαλάσσια αύρα στις
παράκτιες περιοχές της χώρας και από τους βόρειους ανέμους (ετησίες) που φυσούν κυρίως στο
Αιγαίο.

Η άνοιξη έχει μικρή διάρκεια, διότι ο μεν χειμώνας είναι όψιμος, το δε καλοκαίρι αρχίζει
πρώιμα. Το φθινόπωρο είναι μακρύ και θερμό και πολλές φορές παρατηνθεί στη νότια Ελλάδα
και τα νησιά μέχρι τα μισά του Δεκεμβρίου. Στην Αθήνα, την πρωτεύουσα, το κρύο γίνεται
συνήθως αισθητό από το Νοέμβριο και μετά και από εκεί και πέρα συνεχίζεται έως και τα τέλη
tου Μαρτίου. Μετά τα μέσα του Δεκέμβρη, πιάνει ιδιαίτερο κρύο στην πόλη, το οποίο συνεχίζεται
έως και τα τέλη του Φλεβάρη. Από τις αρχές του μήνα Μαρτίου η άνοιξη γίνεται αισθητή και η
θερμοκρασία ανεβαίνει σταδιακά. Η ψυχρότερη εποχή του έτους στην πόλη της Αθήνας
θεωρείται από την τελευταία βδομάδα του Δεκέμβρη έως και την τρίτη εβδομάδα του Γενάρη.
Σε αυτό το σημείο, αξιούνε να αναφέρουμε πως η χαμηλότερη θερμοκρασία που έχει συμβεί ποτέ
στην Αθήνα είναι αυτή των -17,1 °C στις 28 Δεκεμβρίου του 1938.

Αξιούνε να σημειωθεί ότι η Ελλάδα κατέχει το έκτο υψηλότερης καταγεγραμμένης
θερμοκρασίας στην Ευρώπη με 48.0 βαθμούς κελσίου στην Αθήνα (Ελευσίνα και Τατούστις 10
5. ΜΕΘΟΔΟΛΟΓΙΑ - ΣΥΛΛΟΓΗ ΔΕΔΟΜΕΝΩΝ

Για την υλοποίηση της εργασίας κινηθήκαμε σε δύο άξονες:

- Με βιβλιογραφική υποστήριξη συγκεντρώσαμε πληροφορίες για το εκάστοτε έτος εμφάνισης των δύο φαινομένων. Τα κύρια χαρακτηριστικά τα οποία μας ενδιέφεραν ήταν ο τόπος και ο χρόνος εμφάνισης, η ένταση-μέγεθος του φαινομένου και τέλος οι επιπτώσεις τους σε φυσικό και ανθρωπογενείς περιβάλλον.

- Συλλογή δεδομένων σε μορφή κατάλληλη για αποθήκευση και ανάλυση, για τη δημιουργία θεματικών χαρτών μέσω των κατάλληλων υπολογιστικών προγραμμάτων.

Το Εργαστήριο Χαρτογραφίας και Γεωπληροφορικής και το Εργαστήριο Γεωγραφίας Φυσικών Καταστροφών, του τμήματος Γεωγραφίας, του Πανεπιστημίου Αιγαίου μας παραχώρησε τα δεδομένα για την δημιουργία των χαρτών μαζί με μια σειρά παλαιότερων θεματικών χαρτών που απεικονίζαν σεισμούς και πυρκαγιές σε περιοχές του ελλαδικού χώρου. Αυτό μας βοήθησε να κατανοήσουμε τις διάφορες πτυχές του θέματος καθώς και τον τρόπο με τον οποίο πρέπει να εργαστούμε για την σωστή απεικόνιση των δύο φαινόμενων.

Σημαντικές πληροφορίες για την υλοποίηση της εργασίας πήραμε από:

- εφημερίδες και επιστημονικά περιοδικά
- έγκυρους διαδικτυακούς ιστότοπους όπως της Πυροσβεστικής, της Γενικής Γραμματείας Πολιτικής Προστασίας Ελλάδος, του ΟΑΣΠ, του ΙΓΜΕ κ.ο.κ.
• την Πανεπιστημιακή βιβλιοθήκη Μυτιλήνης

• τον Τομέα Γεωθερμίας και Γεωφυσικής, του τμήματος Γεωλογίας και Γεωπεριβάλλοντος, του Καποδιστριακού Πανεπιστημίου Αθηνών.

• Τις διάφορες πανεπιστημιακές σημειώσεις, των μαθημάτων του προγράμματος σπουδών του Τμήματος Γεωγραφίας, που πραγματεύονται το συγκεκριμένο θέμα.

6. ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

Μετά τη σύλλογη όλων των απαραίτητων στοιχείων και των χαρτών, ακολούθησε επεξεργασία όλων των δεδομένων, προκειμένου να γίνει μια όσο το δυνατόν συνολικότερη εκτίμηση του ζητήματος, που θα οδηγούσε στην διεξαγωγή συγκεκριμένων και τεκμηριωμένων συμπερασμάτων. Σε αυτή τη βάση και με την βοήθεια των Γεωγραφικών Συστημάτων Πληροφορίων, δημιουργήθηκαν οι κατάλληλοι για την εργασία αυτή χάρτες.

6.1. Δημιουργία χαρτών με τους σημαντικότερους σεισμούς

Αρχικά δημιουργήσαμε ένα υπόβαθρο το οποίο θα απεικόνισε την περιοχή μελέτης μας, την Ελλάδα, με κύρια χαρακτηριστικά το ηπειρωτικό και το υποθαλάσσιο ανάγλυφο, καθώς και τις υψομετρικές ανισότητες. Επίσης στο υπόβαθρο εμφανίζονται και οι 52 νομοί της Ελλάδος.
Το υπόβαθρο που δημιουργήσαμε χρησιμοποιήθηκε για να απεικονίσουμε τους σημαντικότερους σεισμούς ανά έτος από το 2003 έως το 2009. Έτσι προέκυψαν 7 χάρτες που κύρια χαρακτηριστικά τους ήταν τα επίκεντρα των σεισμών, ο τόπος και ο χρόνος εμφάνισής τους και τέλος το μέγεθος της έντασή τους.

Πρέπει να τονίσουμε ότι τα δεδομένα που χρησιμοποιήσαμε τόσο για την δημιουργία του υπόβαθρου όσο και για την απεικόνιση των σεισμών, μας δόθηκαν σε ψηφιακή μορφή και σε datum ΕΠΣΑ 87, πράγμα μας βοήθησε στην επεξεργασία των δεδομένων.

Οι οπτικές μεταβλητές και τα χαρτογραφικά σύμβολα που χρησιμοποιήσαμε είχαν ως σκοπό την καλύτερη εμφάνιση του φαινομένου και την απόδοση ακριβότερης πληροφορίας, στον τελικό χρήστη.

Στους τελικούς χάρτες μας υπάρχει υπόμνημα, όπου απεικονίζει την διαβάθμιση της έντασης του σεισμού, μετρούμενη σε βαθμούς της κλίμακας Ρίχτερ, το σύμβολο της κλίμακας και το δείκτη του βορρά.

6.2. Δημιουργία χαρτών με τις σημαντικότερες πυρκαγιές

Κύρια προτεραιότητα ήταν η εύρεση των σημαντικότερων πυρκαγιών τη χρονική περίοδος 2005 έως το 2010 και η ομαδοποίηση ανά έτος. Κύρια χαρακτηριστικά των πυρκαγιών ήταν η τοποθεσία έναρξης και η ημερομηνία εμφάνισης τους.

Το υπόβαθρο για την απεικόνιση των πυρκαγιών ήταν το ίδιο με αυτό που χρησιμοποιήσαμε για την απεικόνιση των σεισμών.

Οι εν λόγω χάρτες καλύπτουν την περιοχή ενδιαφέροντος, είναι εύχρηστοι και ευανάγνωστοι για κάθε χρήση και μπορούν να ενημερωθούν με επιπλέον θεματικές πληροφορίες.

Εικόνα 3: Χάρτης που απεικονίζει το υπόβαθρο που χρησιμοποιήσαμε για να αποδώσουμε τους σεισμούς.
Εικόνα 4: Απεικόνιση σεισμών πάνω στο αρχικό υπόβαθρο
Εικόνα 5: Τα σημεία έναρξης πυρκαγιών όπως εμφανίζονται στο Google Earth

Εικόνα 6: Απεικόνιση σημείων έναρξης πυρκαγιών
7. ΑΠΟΤΕΛΕΣΜΑΤΑ

Από την επεξεργασία των δεδομένων, προέκυψαν επτά χάρτες με τους σημαντικότερους σεισμούς την περίοδο 2003 έως 2009 και τέσσερις χάρτες με τις σημαντικότερες πυρκαγιές από το 2005 έως το 2010. Στους χάρτες με τους σεισμούς απεικονίζονται οι δονήσεις από 4 βαθμούς της κλίμακας Ρίχτερ έως 6,5, οι οποίες είχαν επιπτώσεις στο φυσικό και ανθρωπογενές περιβάλλον. Αντίστοιχα, οι χάρτες των δασικών πυρκαγιών, που δείχνουν τα σημεία έναρξης τους, περιέχουν τις πυρκαγιές εκείνες που έκαψαν σημαντικό αριθμό στρεμμάτων γης (δάση, γεωργικές καλλιεργείες κ.α.) , καθώς προκάλεσαν και μεγάλες ζημιές στο δομημένο περιβάλλον.
7.1. Χάρτες Σεισμών
Σημαντικότεροι Σεισμοί 2005

Επικεντρώσεις Σεισμών

- 6.5 - 6.9
- 6.0 - 6.4
- 5.5 - 5.9
- 5.0 - 5.4
- 4.5 - 4.9
- 4.0 - 4.4
- 3.5 - 3.9
- 3.0 - 3.4
- 2.5 - 2.9
- 2.0 - 2.4
- 1.5 - 1.9
- 1.0 - 1.4
- 0.5 - 0.9
- 0.0 - 0.4

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ – ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ - ΑΓΟΥΡΟΓΙΑΝΝΗ ΠΑΝΑΓΙΩΤΗ
Σημαντικότεροι Σεισμοί 2006

Επάνω Σεισμός 2006

- 6.0-6.2
- 5.5-5.9
- 5.0-5.4
- ≤5.0

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ – ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ - ΑΓΟΥΡΟΓΙΑΝΝΗ ΠΑΝΑΓΙΩΤΗ
Σημαντικότεροι Σεισμοί 2007

Επίκεντρα Σεισμών

- 0.0 - 1.2
- 1.3 - 2.9
- 3.0 - 4.9
- 5.0 - 5.9
- 6.0 - 6.5

0 25 50 100 150 200 Ks
Σημαντικότεροι Σεισμοί 2009

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ – ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ - ΑΓΟΥΡΟΓΙΑΝΝΗ ΠΑΝΑΓΙΩΤΗ
7.2. Χάρτες Πυρκαγιών
8. ΣΥΜΠΕΡΑΣΜΑΤΑ

Οι γεωμορφολογικές και γεωφυσικές ιδιότητες του Ελλαδικού χώρου, η βλάστηση και το μεσογειακό κλίμα που επικρατεί σε συνδυασμό με τα αποτελέσματα της έρευνας, μας βοηθούν να εξάγουμε σημαντικά συμπεράσματα για την εμφάνιση σεισμών και πυρκαγιών στην Ελλάδα.

8.1. Σεισμοί

Η σύγκλιση της Ευρασιατικής και Αφρικανικής λιθοσφαιρικής πλάκας δημιουργούν μια σειρά έντονων σεισμικών φαινομένων ξεκινώντας από:

- το Ιόνιο Πέλαγος (Λευκάδα, Ζάκυνθος, Κέρκυρα, Κεφαλλονία),
- νότια της Πελοποννήσου (Μεθόνη, Καλαμάτα, Κόθηρα, Λεωνίδιο),
- τον Κορινθιακό κόλπο (Αχαΐα, Ανδραβίδα),
- νοτιοανατολικά της Κρήτης και της περιοχής της Ρόδου και τέλος
- την περιοχή του Βορείου Αιγαίου (τάφρος Β. Αιγαίου) και της Εύβοια.

Ένας σημαντικός αριθμός σεισμικών δονήσεων στο Βόρειο Αιγαίο είναι αποτέλεσμα της προέκτασης του ρήγματος της Ανατολίας που διασχίζει όλο το Β. Αιγαίο και φτάνει μέχρι το Ν. Μαγνησία.

Αναλυτικότερα, από τους χάρτες που υλοποιήσαμε η σεισμική δραστηριότητα που παρατηρείται ανά έτος είναι:
• Το 2003 παρουσιάζεται έντονη δραστηριότητα στο Ιόνιο Πέλαγος και συγκεκριμένα στη Λευκάδα που έχουμε και το σεισμό των 6,4 Ρίχτερ.

• Το 2004 δεν έχουμε σημαντικές σεισμικές δονήσεις, έκτος από τον σεισμό στην Καλαμάτα των 5,4βαθμών της κλίμακας Ρίχτερ.

• Το 2005 παρατηρούμε μια ακολουθία σεισμών στην περιοχή της Ζακύνθου καθώς και Νότια της Καρπάθου.

• Το 2006 ενδιαφέρον παρουσιάζουν οι σεισμοί στα Κύθηρα των 6,9 Ρίχτερ και οι δονήσεις στην Ζάκυνθο που φτάνουν μέχρι και τα 5,3 Ρίχτερ.

• Το 2007 σεισμικές δονήσεις έχουμε στο Ιόνιο Πέλαγος (Κεφαλλονία) και στην περιοχή της Καρπάθου. Την ίδια χρονιά ισχυρές δονήσεις γίνονται αισθητές σε Αμοργό, Χαλκιδική και Θεσπρωτία.

• Το 2008 η Πελοπόννησος ’’χορεύει’’ στους ρυθμούς των Ρίχτερ. Οι σεισμοί σε Λεωνίδιο, Μεθώνη και Ανδραβίδα, 6,1, 6,7 και 6,4 βαθμών της κλίμακας Ρίχτερ αντίστοιχα, άφησαν πίσω πολλές καταστροφές καθώς και 2 νεκρούς.

8.2. Πυρκαγιές

Όι ήπιοι και μέτρια βροχεροί χειμώνες και τα υπερμέγκα θερικά, έξαρα καλοκαιρια δημιουργούν τις κατάλληλες προϋποθέσεις για την εμφάνιση πυρκαγιών, κυρίως από τον Μάιο έως και τον
Σεπτέμβρη. Σε συνδυασμό μάλιστα και με τους δυνατούς ανέμους που εμφανίζονται την περίοδο του Αυγούστου (Ετησίες) η ταχύτητα εμφάνισης και εξάπλωσης των πυρκαγιών μεγαλώνει.

Οι περιοχές που έχουμε συχνότερη εμφάνιση πυρκαγιών είναι:

- **Πελοπόννησος**: Οι φωτιές του 2007 και 2008 ήταν η καταστροφικότερες σε όλη την Μεσόγειο. Η συνολικά καμένη έκταση το 2007 ανέρχεται τα 1.772.654 στρέμματα, από τα οποία τα 975.180 στρέμματα ήταν δάση και φυσικές εκτάσεις, τα 16.432 στρέμματα ήταν τεχνητές επιφάνειες και τα 781.043 στρέμματα γεωργικές εκτάσεις. Τα κύρια είδη βλάστησης που επλήγησαν ήταν χαλέπιος και μαύρη πεύκη, κουκουναριές και κεφαλληνιακή ελάτη.

- **Ν. Αττικής**: Το 2007 και το 2009 εμφανίστηκαν οι μεγαλύτερες πυρκαγιές στο νομό Αττικής. Οι περιοχές που υπέστησαν τις μεγαλύτερες καταστροφές ήταν ο εθνικός Δρυμός της Πάρνηθας, το Ντράφι και η Πολιτεία στην Πεντέλη, οι περιοχές του Βαρνάβα, του Μαραθώνα και του Γραμματικού αλλά και η περιοχή στο Πόρτο Γερμανός. Συγκεκριμένα οι πυρκαγιές το 2009 έκαψαν στην ανατολική Αττική 210.000 στρέμματα πευκοδάσους και στην δυτική 35.000 στρέμματα ιδιαίς βλάστησης. Ακόμα το 2009 κάηκαν 54.000 στρέμματα στην Κάρυστο, 23.970 στην Εύβοια και 14.000 στην Ζάκυνθο.

- **Εύβοια**: Το φονικότερο χτύπημα δέχθηκε η Εύβοια το 2007. Πάνω από 10 δήμοι και χωριά πλούσια σε δασικές εκτάσεις αποτεφρώθηκαν, οικίες χάθηκαν ενώ υπήρξαν και 6 νεκροί. Σημαντικός παράγοντας υπήρξαν οι δυνατοί άνεμοι που ενίσχυαν την σφοδρότητα των πυρκαγιών.
• Ρόδος: Το 2008 μεγάλη πυρκαγιά έπληξε την ενδοχώρα της Ρόδου. Πρόκειται για την μεγαλύτερη σε έκταση πυρκαγιά που έπληξε το νησί. Η καμένη έκταση υπολογίζετε περίπου στα 132.000 στρέμματα. Το δάσος που κάηκε ήταν ένα από τα παλαιότερα δάση τραχείας πεύκης του νησιού και αποτελούσε ένα από τους σημαντικότερους βιοτόπους για το ελάφι της Ρόδου.

Εκτός των παραπάνω περιοχών σημαντικές πυρκαγιές είχαμε στα νησιά του βορειοανατολικού Αιγαίου (Μυτιλήνη, Χίος, Σάμος) και την Κρήτη. Επίσης σημαντικές καταστροφές προκάλεσαν οι πυρκαγιές στην Κασσάνδρα Χαλκιδικής το 2006, στις Σπέτσες και στην Ραφήνα το 2005.

Οι φυσικές καταστροφές αποτελούν σημαντικό κομμάτι της εξέλιξης του πλανήτη και συνέβαλαν στην εμφάνιση της ζωής πάνω σε αυτόν. Ακολουθούν τον δικό τους δρόμο, χωρίς την διάθεση τιμωρίας ή εκδίκησης, οίκτου ή συμπόνιας. Όσα μετά και να πάρουμε κατά των φυσικών καταστροφών ποτέ δεν θα σταματήσουμε να ζούμε χωρίς ρίσκο. Θα πρέπει όμως όλες οι φυσικές καταστροφές να αντιμετωπίζονται με ιδιαίτερη σοβαρότητα και υπευθυνότητα από τους αρμόδιους και τα υπάρχοντα σχέδια και να μην παραμένουν σε θεωρητικό επίπεδο, αλλά να υλοποιούνται και να εφαρμόζονται προς όφελος των ανθρώπων αλλά και του ίδιου του περιβάλλοντος.
ΒΙΒΛΙΟΓΡΑΦΙΑ

2. Δούλτσος Θ., Γεωλογία: Αρχές και Εφαρμογές, Leader Books, Αθήνα 2000

3. Καλαμποκίδης Κ., Σημειώσεις Τμήματος Γεωγραφίας Πανεπιστημίου Αιγαίου, Γεωγραφία των Φυσικών Καταστροφών, 2008

4. Κουκώλας Σ., Σημειώσεις Τμήματος Γεωγραφίας Πανεπιστημίου Αιγαίου, Εισαγωγή στα Συστήματα Γεωγραφικών Πληροφοριών, 2008

5. Κουτσόπουλος Κ., Γεωγραφικά Συστήματα Πληροφοριών και Ανάλυσης Χώρων, Παπασωτηρίου, Β’ έκδοση, Αθήνα 2005

6. Κουτσόπουλος Κ. και Ανδρουλακάκης, Εφαρμογές του Λογισμικού ArcGis 9* με απλά λόγια, Παπασωτηρίου, Αθήνα 2005

7. Κωνσταντινίδης Π., Μαθαίνουμε να ζούμε με τις δασικές πυρκαγιές, Χριστοδουλίδη, Θεσσαλονίκη 2003

8. Λέκκας Α. Ευθ., Φυσικές και Τεχνολογικές Καταστροφές, Access Pre-Press, Β’ έκδοση, Αθήνα 2000

9. Μουντράκης Μ. Δ., Γεωλογία της Ελλάδος, University Studio Press, Θεσσαλονίκη 1985

10. Παπαζάχος Β. και Παπαζάχου Κ., Οι σεισμοί στην Ελλάδα, ΖΗΤΗ 1999
11. Παπαδόπουλος Γ., *Η πολιτική προστασία στην Ελλάδα - Αντιμετώπιση Φυσικών και Τεχνολογικών Καταστροφών*, ΙΩΝ 2000

12. Σουλακέλλης Ν., Σημειώσεις Τμήματος Γεωγραφίας Πανεπιστημίου Αιγαίου, *Θεματική Χαρτογραφία*, 2005

*Ηλεκτρονικές Διευθύνσεις:

http://www.civilprotection.gr
http://www.econews.gr
http://www.fireservice.gr
http://www.geol.uoa.gr
http://www.oasp.gr
http://www.wikipedia.org
http://www.wwf.gr
<table>
<thead>
<tr>
<th>ΕΤΟΣ</th>
<th>ΗΜΕΡΟΜΗΝΙΑ</th>
<th>ΘΕΣΗ</th>
<th>ΕΝΤΑΣΗ</th>
<th>ΕΣΤΙΑΚΟ ΒΑΘΟΣ (ΧΛΜ)</th>
<th>ΕΠΙΠΤΩΣΕΙΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>14-Αυγ</td>
<td>Λευκάδα</td>
<td>6,4 Mw</td>
<td>12 χλμ</td>
<td>Πτώσεις βράχων, καθιζήσεις, ρογμή στην προβλήτα του λιμανίου της Λυγίας</td>
</tr>
<tr>
<td>2004</td>
<td>1-Μαρ</td>
<td>Καλαμάτα</td>
<td>5,4 Mw</td>
<td></td>
<td>Περιορισμένες βλάβες, ρογμές , σπάσιμο τζαμίων</td>
</tr>
<tr>
<td>2006</td>
<td>8-Ιαν</td>
<td>Κύθηρα</td>
<td>6,9 Mw</td>
<td>64 χλμ</td>
<td>Βλάβες σε σπίτια, στην εκκλησία των Μητάτων, πτώσεις βράχων στο δρόμο Μητάτα- Βιαράδικα</td>
</tr>
<tr>
<td>2006</td>
<td>11-Μαρ</td>
<td>Ζάκυνθος</td>
<td>5,2 Mw</td>
<td>18 χλμ</td>
<td>Πτώσεις βράχων, ρογμές στο λιμενοβραχίωνα Αγίου Νικολάου-Αγίου Διονυσίου</td>
</tr>
<tr>
<td>Ετών</td>
<td>Μήνας</td>
<td>Χώρα</td>
<td>Μέγεθος</td>
<td>Είδος</td>
<td>Κατάσταση</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>2006</td>
<td>12-Μαρ</td>
<td>Ζάκυνθος</td>
<td>5,3 Mw</td>
<td>Δεν αναφέρθηκαν ζημιές ή προβλήματα</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>31-Ιουλ</td>
<td>Αμοργός</td>
<td>5,2 Mw</td>
<td>40 χλμ</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>19-Απρ</td>
<td>Χαλκιδική</td>
<td>5,3 Mw</td>
<td>Δεν αναφέρθηκαν ζημιές ή προβλήματα</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>29-Ιουν</td>
<td>Θεσπρωτία</td>
<td>5,7 Mw</td>
<td>Μικρές υλικές ζημιές στην κοινότητα Πέρδικα, στην Κέρκυρα και στην Πάργα</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>6-Ιαν</td>
<td>Λεωνίδιο</td>
<td>6,1 Mw</td>
<td>Βλάβες σε λιθόκτιστα κτήρια, αρχοντικά και εκκλησίες, πτώσεις βράχων στο οδικό δίκτυο</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>14-Φεβ</td>
<td>Μεθώνη</td>
<td>6,7 Mw</td>
<td>35 χλμ</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>8-Ιουν</td>
<td>Ανδραβίδα</td>
<td>6,4 Mw</td>
<td>2 νεκροί, δεκαδες τραυματισμοί,</td>
<td></td>
</tr>
<tr>
<td>Ετήσια Περιοδεία</td>
<td>Ημερομηνία</td>
<td>Περιοχή</td>
<td>Ποσότητα (Mw)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>---------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-Ιουλίου</td>
<td>Ρόδος</td>
<td>5,3 Mw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΤΟΠΟΘΕΣΙΑ</td>
<td>ΗΜΕΡΟΜΗΝΙΑ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΣΠΕΣΤΣΕΣ</td>
<td>23/7/2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΡΑΦΗΝΑ ΑΤΤΙΚΗΣ</td>
<td>28/7/2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΑΣΣΑΝΔΡΑ ΧΑΛΚΙΔΙΚΗΣ</td>
<td>21/8/2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΜΑΝΗ</td>
<td>21/8/2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΕΘΝΙΚΟΣ ΔΡΥΜΟΣ ΠΑΡΝΗΘΑΣ</td>
<td>28/6/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΖΑΚΥΘΟΣ</td>
<td>25/7/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΟΥΝΙΝΑ ΑΙΓΙΟΥ ΑΧΑΙΑΣ</td>
<td>24/7/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΠΕΝΤΕΛΗ (ΝΤΡΑΦΙ-ΠΟΛΙΤΕΙΑ)</td>
<td>16/8/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΖΑΧΑΡΩ ΗΛΕΙΑΣ</td>
<td>24/8/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΜΕΓΑΛΟΠΟΛΗ ΑΡΚΑΔΙΑΣ</td>
<td>23/8/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΓΙΟΣ ΒΑΣΙΛΕΙΟΣ ΤΡΙΠΟΛΗΣ</td>
<td>25/8/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΡΕΟΠΟΛΗ ΛΑΚΩΝΙΑΣ</td>
<td>25/8/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΦΙΛΙΑΤΡΑ-ΜΕΤΑΞΑΔΕΣ</td>
<td>25/8/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΜΕΣΣΗΝΙΑΣ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΑΛΕΝΤΖΙ ΚΟΡΙΝΘΙΑΣ</td>
<td>24/8/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΙΑΤΟ ΚΟΡΙΝΘΙΑΣ</td>
<td>24/8/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔΑΣΟΣ ΣΟΦΙΝΟΥ ΚΟΡΙΝΘΙΑΣ</td>
<td>26/8/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΞΕΡΟΛΑΚΑ ΑΧΑΙΑΣ</td>
<td>24/8/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΥΜΗΤΤΟΣ ΑΤΤΙΚΗΣ</td>
<td>25/8/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΕΥΒΟΙΑ</td>
<td>25/8/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΖΗΛΕΥΤΟ-ΛΥΧΝΟ-ΔΙΟΦΟΦΟ ΦΘΙΩΤΙΔΟΣ</td>
<td>26/8/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΙΓΙΣ ΓΥΘΕΙΟΥ</td>
<td>19/6/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΙΔΗΨΟΣ Δ.ΑΙΘΗΨΟΥ</td>
<td>27/6/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΘΗΒΑΙ/ΜΟΣΧΟΠΟΔΙ</td>
<td>1/7/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ.Δ ΧΡΥΣΟΒΙΤΣΙ ΔΗΜΟΥ ΦΑΛΑΝΘΟΥ ΒΥΤΙΝΑΣ</td>
<td>4/7/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔΡΟΣΕΡΟΝ ΓΙΑΝΝΙΤΣΩΝ</td>
<td>8/7/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ.Δ ΜΟΥΖΑΚΑΙΚΩΝ Δ.ΦΑΝΑΡΙΩΝ</td>
<td>9/7/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ν.ΠΡΕΒΕΖΗ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ/Δ ΜΕΛΑΜΠΕΣ-ΔΗΜΟΥ ΛΑΜΠΗΣ</td>
<td>10/7/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ/Δ ΔΑΜΝΟΝΙ- ΔΗΜΟΥ ΦΟΙΝΙΚΑ</td>
<td>12/7/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΠΥΛΗ-ΠΑΝΑΚΤΟ ΔΕΡΒΕΝΟΧΩΡΙΩΝ</td>
<td>15/7/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΜΠΕΛΑΚΙΑ ΤΕΜΠΩΝ ΛΑΡΙΣΑΣ</td>
<td>16/7/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΖΑΛΙ ΜΑΚΡΥ ΓΙΑΛΟΥ ΣΗΤΕΙΑΣ</td>
<td>17/7/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΑΡΟΥΤΕΣ ΛΙΔΩΡΙΚΙΟΥ</td>
<td>19/7/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΙΡΙΑ ΔΗΜΟΥ ΑΣΙΝΗΣ ΝΑΥΠΛΙΟΥ</td>
<td>20/7/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔΗΜΟΣ ΑΤΤΑΒΥΡΟΥ- ΑΓ.ΙΣΙΔΩΡΟΣ ΡΟΔΟΣ</td>
<td>22/7/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΡΧΑΙΑ ΚΑΛΥΔΩΝΑΣ- ΑΓΙΟΣ ΙΩΑΝΝΗΣ ΜΕΣΟΛΟΓΓΙΟΥ</td>
<td>23/7/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΒΑΡΥΜΠΟΜΠΗ ΚΡΥΟΝΕΡΙΟΥ</td>
<td>23/7/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΤΤΙΚΗΣ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΓ.ΧΑΡΑΛΑΜΠΟΣ-ΠΗΓΑΔΙ-ΣΙΜΙΖΑ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΤΡΑΓΑΝΟΥ ΗΛΙΑ</td>
<td>31/7/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΡΝΑΙ Δ/Δ ΓΕΡΑΚΑ Δ. ΖΑΡΑΚΟΣ</td>
<td>31/7/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΜΟΛΑΩΝ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΟΙΛΙΩΜΕΝΟ- ΑΓΑΛΑ ΖΑΚΥΝΘΟΥ</td>
<td>1/8/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΟΡΟΣ ΜΕΡΕΝΤΑ ΜΑΡΚΟΠΟΥΛΟΥ</td>
<td>1/8/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ.Δ ΣΠΑΡΤΟΥ- Δ. ΑΜΦΙΔΟΧΙΑΣ</td>
<td>3/8/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΛΙΧΑΔΑ ΙΣΤΙΑΙΑΣ</td>
<td>5/8/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΠΑΖΑΡΑΚΙ Δ.Δ ΑΓΡΙΟΒΟΥΝΟ Δ.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΝΔΑΝΙΑΣ ΜΕΣΣΗΝΙΑ</td>
<td>6/8/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΜΑΥΡΟΛΑΚΟΣ ΛΙΜΕΝΑΡΙΩΝ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΘΑΣΟΥ</td>
<td>7/8/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΜΑΡΑΝΤΟΥ ΘΕΣΗ "ΜΑΡΙΑ-ΑΝΩ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΛΕΥΚΑ" ΚΟΝΙΤΣΑΣ</td>
<td>12/8/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΟΚΚΙΝΟ Δ/Δ ΛΥΓΟΥΡΙΟΥ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ.ΑΣΚΛΗΠΙΕΙΟΥ ΝΑΥΠΛΙΟΥ</td>
<td>14/8/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΕΧΡΑΛΩΝΑ ΠΗΛΙΟΥ</td>
<td>15/8/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΓΙΟΝΟΡΙΟΥ ΔΗΜΟΥ ΤΕΝΕΑΣ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΟΡΙΝΘΟΥ</td>
<td>21/8/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΜΑΜΑΛΙΑ Δ.Δ ΚΑΤΣΑΡΩΝΙΟΥ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΑΡΥΣΤΟΥ</td>
<td>22/8/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Κ/Δ ΠΑΛΙΑΜΠΕΛΑ ΚΟΙΝ.</td>
<td>ΒΕΡΔΙΚΟΥΣΙΑ ΕΛΑΣΣΩΝΑΣ</td>
<td>24/8/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΠΑΠΑΔΙΑΝΑ - ΣΗΜΩΝ ΠΙΝΑΚΑΣ</td>
<td>ΚΟΥΝΤΟΥΡΙΑΝΑ ΧΑΝΙΩΝ</td>
<td>25/8/2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ.Δ. ΜΟΥΖΑΚΙΟΥ ΓΑΡΓΑΛΙΑΝΩΝ</td>
<td>25/8/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΠΕΛΕΚΗΣ ΔΡΑΜΑΣ</td>
<td>26/8/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΙΓΕΙΡΟΣ ΔΡΑΜΑΣ</td>
<td>7/9/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ.Δ. ΠΙΕΡΩΤΟΥ ΦΩΤΙΑΔΟΣ</td>
<td>7/9/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔΑΣ. ΕΚΤ. ΜΠΕΛΛΕΣ Δ. ΜΟΥΡΙΩΝ</td>
<td>7/9/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΦΑΛΛΟΡ ΔΡΑΜΑΣ</td>
<td>8/9/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"ΛΑΨΙΡΝΑ", ΕΡΕΙΣΟΥ-ΑΝΤΙΣΗΣ</td>
<td>10/9/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔΕΣΒΟΥ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΛΙΜΝΗ ΣΤΥΜΦΑΛΙΑΣ ΚΟΡΙΝΘΙΑΣ</td>
<td>2/11/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΣΑΛΑΚΟΣ ΔΗΜΟΥ ΚΑΜΕΙΡΟΥ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΡΟΔΟΥ</td>
<td>4/12/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΝΟΜΟΣ ΑΤΤΙΚΗΣ-ΤΕΡΜΑ ΚΩΝ/ΝΟΥ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΘΑΝΑΤΟΥ</td>
<td>15/6/2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΝΟΜΟΣ ΒΟΙΩΤΙΑΣ-ΘΗΣΒΗ</td>
<td>17/8/2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ</td>
<td>ΗΡΑΚΛΕΙΟ</td>
<td>2/8/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔΗΜΟΣ ΚΑΡΥΣΤΟΥ-ΠΕΡΙΟΧΗ</td>
<td>ΠΗΔΟΥΛΕΙΚΑ</td>
<td>22/8/2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΒΑΡΝΑΒΑΣ ΜΑΡΑΘΩΝ</td>
<td>ΒΑΡΝΑΒΑΣ ΜΑΡΑΘΩΝ</td>
<td>22/8/2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΠΙΕΝΤΗΛΗ ΑΤΤΙΚΗΣ</td>
<td>ΠΙΕΝΤΗΛΗ ΑΤΤΙΚΗΣ</td>
<td>23/8/2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΝΟΜΟΣ ΕΒΡΟΥ-ΔΗΜΟΙ ΦΕΡΩΝ ΚΑΙ ΤΡΑΙΑΝΟΥΠΟΛΗΣ</td>
<td>ΝΟΜΟΣ ΕΒΡΟΥ-ΔΗΜΟΙ ΦΕΡΩΝ ΚΑΙ ΤΡΑΙΑΝΟΥΠΟΛΗΣ</td>
<td>6/9/2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΑΡΥΣΤΟΣ ΕΥΒΟΙΑΣ</td>
<td>ΚΑΡΥΣΤΟΣ ΕΥΒΟΙΑΣ</td>
<td>22/7/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΛΙΒΑΔΕΙΑ</td>
<td>ΛΙΒΑΔΕΙΑ</td>
<td>22/7/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΡΚΑΔΙΑ</td>
<td>ΑΡΚΑΔΙΑ</td>
<td>22/7/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΠΟΡΤΟ ΓΕΡΜΑΝΟΣ</td>
<td>ΠΟΡΤΟ ΓΕΡΜΑΝΟΣ</td>
<td>2/8/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΣΕΣΙ ΓΡΑΜΜΑΤΙΚΟΥ</td>
<td>ΣΕΣΙ ΓΡΑΜΜΑΤΙΚΟΥ</td>
<td>21/8/2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΠΛΑΣΗΧΝ</td>
<td>ΠΛΑΣΗΧΝ</td>
<td>21/8/2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΛΧΦΟΡΟΣ ΚΑΜΑΡΗΟΤ</td>
<td>ΑΛΧΦΟΡΟΣ ΚΑΜΑΡΗΟΤ</td>
<td>20/8/2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΖΑΚΥΝΘΟΣ-Δ. Δ. ΑΝΑΦΩΝΗΣΙΑΣ</td>
<td>ΖΑΚΥΝΘΟΣ-Δ. Δ. ΑΝΑΦΩΝΗΣΙΑΣ</td>
<td>20/8/2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔΕΥΚΤΡΑ ΠΛΑΤΑΙΩΝ</td>
<td>ΔΕΥΚΤΡΑ ΠΛΑΤΑΙΩΝ</td>
<td>21/8/2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σημείωση</td>
<td>Ημερομηνία</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΣΑΜΟΣ</td>
<td>2/8/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΧΑΙΑ</td>
<td>3/8/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΝΕΜΕΑ</td>
<td>3/8/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΕΡΑΤΕΑ</td>
<td>4/8/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΕΡΚΥΡΑ</td>
<td>5/8/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΥΘΗΡΑ</td>
<td>15/8/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΙΕΡΑΠΕΤΡΑ</td>
<td>15/8/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΕΡΚΥΡΑ</td>
<td>27/8/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΧΙΟΣ</td>
<td>27/8/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΦΘΙΩΤΙΔΑ</td>
<td>29/8/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΕΡΑΤΕΑ</td>
<td>29/8/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΓΡΙΛΙΑ-ΜΕΣΟΛΟΓΙΟΥ</td>
<td>31/8/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΜΕΝΗΙΔΟΣ-ΠΕΛΛΑΣ</td>
<td>1/9/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΕΦΑΛΟΝΙΑ</td>
<td>2/9/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΟΙΤΥΛΟ, ΛΑΚΩΝΙΑΣ</td>
<td>9/9/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΓΡΕΒΕΝΑ</td>
<td>15/9/2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Νότος</td>
<td>Όνομα</td>
<td>Ημερομηνία</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΑΝΔΡΟΣ</td>
<td></td>
<td>21/9/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΣΕΡΡΕΣ</td>
<td></td>
<td>28/9/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΡΕΘΥΜΝΟ</td>
<td></td>
<td>28/9/2010</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ΠΑΡΑΡΤΗΜΑ-2 ΕΙΚΟΝΕΣ

Εικόνα 7: Αποτελέσματα της πυρκαγιάς στο χώρο της Αρχαίας Ολυμπίας το 2007

Εικόνα 8: Από την πυρκαγιά στην Ηλεία το 2007
Εικόνα 9: Η καταστροφή που προκάλεσε η πυρκαγιά στη Ρόδο το 2008

Εικόνα 10: Καμένο δάσος από την πυρκαγιά της Ρόδου το 2008
Εικόνα 11: Πτώσεις βράχων από το σεισμό της Λευκάδας το 2003

Εικόνα 12: Υλικές καταστροφές από την κατολίσθηση βράχων από το σεισμό της Λευκάδας το 2003
Εικόνα 13: Επιπτώσεις από το σεισμό των Κυθήρων το 2006

Εικόνα 14: Καθίζηση εδάφους από το σεισμό των Κυθήρων το 2006
Εικόνα 15: Καταστροφή σε οίκημα από το σεισμό στην Ανδραβίδα το 2007

Εικόνα 16: Ο σεισμός της Ανδραβίδας το 2009 εκτός από υλικές ζημίες προκάλεσε και έντονη αναστάτωση στους κατοίκους της περιοχής που ανησυχούσαν για τυχόν μεγάλους μετασεισμούς
Εικόνα 17: Πτώση πολυκατοικίας από το σεισμό του Αιγίου το 1995. Ο σεισμός των 6,5 Ρίχτερ άφησε πίσω του 26 νεκρούς και μια πόλη <<φάντασμα>>.