ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΔΙΟΙΚΗΣΗΣ
ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΣ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΩΝ ΥΠΗΡΕΣΙΩΝ

“ΕΞΥΠΝΑ ΛΙΜΑΝΙΑ ΚΑΙ ΝΕΕΣ ΤΕΧΝΟΛΟΓΙΕΣ LOGISTICS”

Πτυχιακή Εργασία για το Προπτυχιακό Πρόγραμμα Σπουδών

Αθανάσιος Ξενικάκης

Επιβλέπουσα Καθηγήτρια ... Αμαλία Πολυδωροπούλου

ΧΙΟΣ 2020
Η ναυτιλιακή και η λιμενική βιομηχανία τα τελευταία χρόνια βιώνουν σημαντικές αλλαγές στο μεγαλύτερο φάσμα τους λόγω των τεχνολογικών, επιχειρησιακών και οργανωτικών εξελίξεων. Όσον αφορά την λιμενική βιομηχανία, έχουν γίνει πολλές συζητήσεις και μελέτες αναφορικά με το θέμα των έξυπνων λιμανιών.

Στην παρούσα πτυχιακή εργασία, διερευνάται και αναλύεται το περιβάλλον γύρω από το οποίο λειτουργούν και αναπτύσσονται τα έξυπνα λιμάνια καθώς και τους παράγοντες που τα επηρεάζουν. Παράλληλα, μέσω στοχευμένων παραδείγματων, γίνεται αναφορά στους παίκτες της ναυτιλιακής και λιμενικής βιομηχανίας που διαδραματίζουν σημαντικό ρόλο στην ανάπτυξή τους. Επιπρόσθετα, η παρούσα εργασία παρουσιάζει αναλυτικά τις τεχνολογίες logistics που χρησιμοποιεί ένα έξυπνο λιμάνι και τον τρόπο με τον οποίο καθίσταται αποδοτικότερο, πιο βιώσιμο και φιλικότερο προς το περιβάλλον μέσω αυτών.

Η εργασία αυτή, προσεγγίζει ακόμα το θέμα των επιπτώσεων που ενέχει η υιοθέτηση αυτοματισμών στο λιμάνι του μέλλοντος. Υπό αυτό το πρίσμα, γίνεται αναφορά στις προκλήσεις που θα χρειαστεί να αντιμετωπίσουν οι λιμενικοί εργαζόμενοι και τους τρόπους με τους οποίους μπορούν να παραμείνουν αναγνωστικοί στην δουλειά τους.

Λέξεις κλειδιά: Έξυπνα λιμάνια, τεχνολογίες logistics, προκλήσεις στην λιμενική αγορά εργασίας
Περιεχόμενα

ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ ... 6
ΚΕΦΑΛΑΙΟ 2: ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΑΝΑΣΚΟΠΗΣΗ ... 8
ΚΕΦΑΛΑΙΟ 3: ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ, ΛΕΙΤΟΥΡΓΙΕΣ ΚΑΙ ΔΕΙΚΤΕΣ ΤΩΝ ΕΞΥΠΝΩΝ ΛΙΜΑΝΙΩΝ11
 Έξυπνο λιμάνι (SMART PORT) .. 11
 Δίκτυο Έξυπνων Λιμανιών (Smart Port Network) .. 12
 Τεχνολογικό άλμα .. 13
 Smart Port Index .. 14
 Κατευθύνσεις πολλαπλών χρήσεων (Smart Port Multipurpose Initiatives) 15
 Στοχευμένες κατευθύνσεις (Smart Port Targeted Initiatives) 16
 SmartPort Platform ... 16
 Λειτουργίες-Εργασίες .. 19
 Περιβάλλον ... 21
 Ενέργεια ... 23
 Ασφάλεια και Προστασία .. 24
 Συμπέρασμα .. 26
 Smart Port Index (SPI) .. 27
 Βασικοί Δείκτες Απόδοσης Key Performance Indicators (KPIs) 28
 Συμπεράνσεις ... 31
ΚΕΦΑΛΑΙΟ 4: ΤΕΧΝΟΛΟΓΙΕΣ ΕΞΥΠΝΩΝ ΛΙΜΑΝΙΩΝ ΠΑΡΟΝ ΚΑΙ ΑΜΜΕΣΟ ΜΕΛΛΟΝ32
 Αυτοματοποίηση (Automation) ... 32
 Αυτοματοποίηση ΣΕΜΠΟ ... 32
 Ορισμός EDI ... 33
 Παράδειγμα STOWAGE PLAN ... 33
 Οφέλη από την χρήση του EDI .. 34
 Terminal Operating System (TOS) ... 35
 Σταθμοί Εμπορευματοκιβωτίων (Container terminals) 36
 Automated και manual τερματικοί .. 37
 Πρακτική προσέγγιση ... 41
 Πλεονεκτήματα, μειονεκτήματα και προκλήσεις της αυτοματοποίησης των PCTs 43
 ΤΕΧΝΟΛΟΓΙΕΣ ... 47
 COLD IRONING-Shore-to-Ship power (SSP) .. 47
 Στοιχεία CI .. 48
 Σχεδιασμός Συστήματος .. 48
 Εμπόδια Εγκατάστασης ... 49
 Blockchain .. 50
Τι είναι το Blockchain; .. 50
Πλεονεκτήματα .. 51
The Maritime Logistics System ... 52
Εφαρμογές του Blockchain στον ναυτιλιακό κλάδο ... 54
Ψηφιοποίηση και ευκολία στην ανταλλαγή εγγράφων ... 55
Παρακολούθηση και ανίχνευση (Tracking and tracing) ... 55
Αύξηση της ασφάλειας και της διαφάνειας των συναλλαγών μέσω του blockchain στην ναυτιλία 56
Η περίπτωση των MAERSK-IBM .. 59
Συμπέρασμα ... 60
Big Data ... 62
Τι εννοούμε με τον όρο Big Data .. 62
Χαρακτηριστικά των Big Data ... 62
Υιοθέτηση των Big Data στην ναυτιλιακή βιομηχανία ... 64
Χρήση των Big Data σε λιμάνια και τερματικούς .. 64
Internet of things ... 66
Internet of Things στα Έξυπνα Λιμάνια-Πρότυπα επικοινωνίας για τα Έξυπνα Λιμάνια .. 67
Βασικές Εφαρμογές των Internet of Things στην ανάπτυξη Έξυπνων Λιμανιών 68
Η ενοποίηση των βασικών τεχνολογιών και του γενικού πλαισίου των έξυπνων λιμένων69
Μελλοντικές Προοπτικές .. 71
Συμπέρασμα ... 71
ΚΕΦΑΛΑΙΟ 5: ΠΡΟΚΛΗΣΕΙΣ ΚΑΙ ΕΠΙΤΠΩΣΕΙΣ ΑΥΤΟΜΑΤΙΣΜΟΥ ... 73
Εισαγωγή ... 73
Το ναυτιλιακό cluster ... 74
Αυτοματοποίηση των ΣΕΜΠΟ (Automation of container terminals) ... 75
Πόσο ευαίσθητη είναι η λιμενική αγορά εργασίας στην καινοτομία; Πόσο ευάλωτες είναι οι θέσεις εργασίας στην καινοτομία της τεχνολογίας των πληροφοριών και της επικοινωνίας (ΤΠΕ) και στην αυτοματοποίηση? .. 76
Νέες hard και soft δεξιότητες .. 77
Νέες δεξιότητες: Ανάπτυξη ειδικών κύκλων μαθημάτων κατάρτισης ... 78
Πλεονεκτήματα και μειονεκτήματα της τεχνολογικής ανάπτυξης στα λιμάνια 80
Μελλοντικές προκλήσεις που θα χρειαστεί να αντιμετωπίσουν οι λιμενικοί εργαζόμενοι 83
Συμπέρασμα: Αγορά εργασίας, δεξιότητες και ικανότητες στο λιμάνι του μέλλοντος.... 84
ΚΕΦΑΛΑΙΟ 7: ΒΙΒΛΙΟΓΡΑΦΙΑ .. 86
Πίνακας Σχημάτων
Σχήμα 1: Τα 4Vs των Big Data... 63
Σχήμα 2: Προσέγγιση κατάρτισης εργαζομένων... 80

Πίνακας Εικόνων
Εικόνα 1: Το σύστημα της ναυτιλιακής εφοδιαστικής αλυσίδας 53

Κατάλογος Πινάκων
Πίνακας 1: Τομείς και ύπο-τομείς των έξυπνων λιμανιών.......................... 17
Πίνακας 2: Αυτοματοποιημένοι (Main automated) (A) και ήμι-αυτοματοποιημένοι (semi-automated (S)) τερματικοί με χρονολογική σειρά................................. 39
Πίνακας 3: Πλεονεκτήματα και Μειονεκτήματα αυτοματισμού....................... 45
Πίνακας 4: Πλεονεκτήματα και μειονεκτήματα της τεχνολογικής ανάπτυξης για την λιμενική εργασία... 80
Πίνακας 5: Η εξέλιξη της λιμενικής εργασίας (πρίν και μετά)...................... 82
ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ

Κατά τη διάρκεια του τελευταίου μισού αιώνα, μερικές από τις τάσεις που παρατηρούνται στην λιμενική βιομηχανία είναι η εισαγωγή των εμπορευματοκιβωτίων, η γιγάντωση των πλοίων καθώς και η υιοθέτηση καινοτόμων τεχνολογιών στα λιμάνια. Βέβαια, παρά τα τεχνολογικά άλματα, υπάρχουν ακόμα αρκετές λειτουργίες των λιμένων που εξαρτώνται από χειροκίνητες κινήσεις και από το χαρτί. Συν τοις άλλοις, η αυτοματοποίηση των λιμανιών/τερματικών έχει ως εύλογο αποτέλεσμα την αλλαγή του πλαισίου του εργασιακού περιβάλλοντος.

Τα παραπάνω στοιχεία επομένως, κρούουν τον κώδωνα για επιτακτική ανάγκη αλλαγής στον τρόπο που λειτουργούν τα λιμάνια σήμερα. Στόχος της συγκεκριμένης εργασίας είναι η ανάλυση του τρόπου με τον οποίο τα έξυπνα λιμάνια έρχονται να δώσουν λύση στα παραπάνω προβλήματα.

Ειδικότερα, σκοπός των έξυπνων λιμανιών είναι ο μετασχηματισμός του λιμανιού σε αποδοτικότερο και φιλικότερο προς το περιβάλλον, εξασφαλίζοντας ταυτόχρονα την βιωσιμότητά του. Ένα έξυπνο λιμάνι, είναι σε θέση να καταφέρει κάτι τέτοιο μέσω της εκμετάλλευσης διαφόρων καινοτόμων εργαλείων με τον καλύτερο δυνατό τρόπο.

Τέλος, στόχοι αυτής της εργασίας είναι να αναλύσει το περιβάλλον γύρω από το οποίο λειτουργούν τα έξυπνα λιμάνια, δίνοντας έτσι στον αναγνώστη την γενικότερη εικόνα της λιμανικής ανάπτυξης και της υιοθέτησης των καινοτόμων τεχνολογιών στα λιμάνια σήμερα. Ταυτόχρονα όμως, η εργασία έχει ως απώτερο στόχο να προβληματιστεί τον αναγνώστη για τυχόν επερχόμενες προκλήσεις που θα αντιμετωπίσουν τα λιμάνια εξαιτίας της τεχνολογίας.
Πιο συγκεκριμένα σκοπός της εργασίας είναι να απαντηθούν τα ακόλουθα ερωτήματα:

1) Τι είναι τα έξυπνα λιμάνια και με ποιόν τρόπο ξεχωρίζουν από τα υπόλοιπα;

2) Με ποιόν τρόπο λειτουργούν τα έξυπνα λιμάνια για την επίτευξη των τυπικών θυσιών τους και ποιοι παράγοντες έχουν επίδραση σε αυτό?

3) Ποιες είναι οι τεχνολογίες που χρησιμοποιούνται στα έξυπνα λιμάνια και σε τι βαθμό αξιοποιούνται σήμερα στα σύγχρονα λιμάνια;

4) Ποιες είναι οι επιπτώσεις και οι προκλήσεις του αυτοματισμού στους τερματικούς και το επίπεδο έχουν στην εργασιακή αγορά?
ΚΕΦΑΛΑΙΟ 2: ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΑΝΑΣΚΟΠΗΣΗ

Η ανάγκη για αλλαγή στον τρόπο που λειτουργούν τα λιμάνια σήμερα έφερε στο προσκήνιο τα έξυπνα λιμάνια. Ως έξυπνο λιμάνι θεωρείται το λιμάνι που χρησιμοποιεί τεχνολογίες όπως Internet of Things (IoT), Artificial Intelligence (AI), Blockchain και Big data για να γίνει περισσότερο αποτελεσματικό και ικανό να χειρίζεται μεγαλύτερους όγκους εμπορευμάτων (Port Technology, 2019).

Τα έξυπνα λιμάνια προέκυψαν από 3 βασικές προκλήσεις που αντιμετωπίζει η λιμενική βιομηχανία σήμερα: 1) Το επίπεδο της λειτουργικής αρτιότητας του τερματικού, 2) Τις προκλήσεις από την εξωτερική αγορά, 3) Τις νέες επιχειρησιακές ευκαιρίες που δημιουργούνται στην λιμενική βιομηχανία (Port Technology, 2019).

Καθώς κατευθυνόμαστε προς το υψηλότερο επίπεδο ψηφιακής ωριμότητας στην λιμενική βιομηχανία, ενδέχεται να υπάρξουν αρκετές προκλήσεις για τα λιμάνια που επιθυμούν να μετατραπούν σε έξυπνα. Μία από αυτές είναι η ανταλλαγή πληροφοριών με άλλα ανταγωνιστικότερα λιμάνια (Port of Rotterdam, British Ports Association Port Futures, 2019). Κάτι τέτοιο όπως καταλαβαίνουμε, μπορεί να καταστήσει πιο χρονοβόρο των μετασχηματισμών των λιμανιών σε έξυπνα, καθώς η έγκυρη πληροφόρηση στην ναυτιλιακή βιομηχανία είναι υψίστης σημασίας.

Για να υπάρξει όμως μια αξιολόγηση των αποδόσεων και της βιωσιμότητας των έξυπνων λιμανιών, έχουν δημιουργηθεί ορισμένοι δείκτες. Αυτοί οι δείκτες ονομάζονται Smart Port Indexes (SPI) και έχουν ως στόχο να βελτιώσουν την παραγωγικότητα και την βιωσιμότητα των λιμανιών βασιζόμενοι σε βασικούς δείκτες απόδοσης Key Performance Indicators (KPIs). Αυτοί οι βασικοί δείκτες απόδοσης οργανώνονται γύρω από τέσσερις βασικούς τομείς δραστηριότητας ενός έξυπνου λιμανιού: λειτουργίες, περιβάλλον, ενέργεια, ασφάλεια και προστασία (Molavi, 2019).

Η παρακολούθηση αυτών των δεικτών, δίνει την απαραίτητη ανατροφοδότηση στους διαχειριστές λιμένων για να αποφασίσουν εάν κρίνεται απαραίτητο να αλλάξουν τον τρόπο λήψης αποφάσεων.
Ο μετασχηματισμός προς το υψηλότερο επίπεδο ψηφιακής ωριμότητας στην λιμενική βιομηχανία συνοδεύεται και με την αυτοματοποίηση σε μεγάλο βαθμό του λιμανιού.

Πιο συγκεκριμένα, οι τερματικοί σταθμοί εμπορευματοκιβωτίων, έχουν ορισμένα χαρακτηριστικά που τους παρέχουν τη δυνατότητα να φτάσουν σε πολύ υψηλότερο επίπεδο αυτοματοποίησης από άλλους τύπους τερματικών (Martín-Soberón, Monfort, Sapiña, Monterde, & Calduch, 2014). Μερικά από αυτά είναι: 1) Η τυποποίηση των μέσων μεταφοράς των εμπορευματοκιβωτίων, 2) Η τυποποίηση του τρόπου χειρισμού των εμπορευμάτων, 3) Το υψηλό επίπεδο συναλλαγών που λαμβάνουν χώρα, 4) Το υψηλό αντίκτυπο της τεχνολογίας στην κερδοφορία των τερματικών σταθμών (Martín-Soberón, Monfort, Sapiña, Monterde, & Calduch, 2014).

Το επίπεδο της τυποποίησης και εξειδίκευσης είναι αυτό που τους επιτρέπει να επιτύχουν υψηλό βαθμό αυτοματοποίησης εξοπλισμού και διαδικασιών. Πέραν αυτού, ο σχεδιασμός και η διαχείριση αυτού του τύπου τερματικού δείχνει μια ριζική αλλαγή από την κλασική σύλληψη των συμβατικών τερματικών (Martín-Soberón, Monfort, Sapiña, Monterde, & Calduch, 2014). Ακόμα, οι συγκεκριμένοι τερματικοί χρησιμοποιούν ορισμένες τεχνολογίες logistics που έχουν ως στόχο την βελτίωση Α) της επιχειρησιακής απόδοσης του τερματικού, Β) την αύξηση της ασφάλειας και της προστασίας, Γ) την συμβολή στην περιβαλλοντική βιωσιμότητα του (Martín-Soberón, Monfort, Sapiña, Monterde, & Calduch, 2014). Μερικές από αυτές είναι επιγραμματικά: Cold Ironing, Blockchain, Big Data, Internet of Things.

Ωστόσο, αυτές οι τεχνολογικές και όχι μόνο- τάσεις της ναυτιλιακής βιομηχανίας διαμορφώνουν ένα νέο πλαίσιο δημιουργώντας νέες προκλήσεις και απειλές για την λιμενική εργασία, δεδομένης της αυξανόμενης ζήτησης για νέες θέσεις
εργασίας με επίκεντρο το προσωπικό υψηλής ειδίκευσης (Vaggelas & Camille, 2019).

Παράλληλα, η αυξανόμενη ποσότητα νέων δεδομένων και ροής πληροφοριών δημιουργεί νέες προκλήσεις για τα λιμάνια, απαιτώντας μεγαλύτερη οργανωτική πολυπλοκότητα (Vaggelas & Camille, 2019). Λόγω των νέων τεχνολογιών, το λιμάνι θα χρειαστεί να συμβαδίσει με τις τάσεις της εποχής για να διατηρήσει το ανταγωνιστικό του πλεονέκτημα.

Επομένως, δημιουργείται η ανάγκη μάθησης νέων hard και soft δεξιοτήτων από την μεριά των εργαζομένων (Vaggelas & Camille, 2019). Ένα τέτοιο εγχείρημα μπορεί να επιτευχθεί, μέσω της εκπαίδευσης και κατάρτισης του ήδη υπάρχοντος εργατικού δυναμικού, με την δημιουργία εκπαιδευτικών προγραμμάτων και σεμιναρίων. Ως εύλογο αποτέλεσμα, τα λιμάνια θα χρειαστεί σε πολλές περιπτώσεις να αναθεωρήσουν τον τρόπο λήψης αποφάσεων καθώς και τα κριτήρια πρόσληψης προσωπικού (Vanthillo, Cant, Vanelislander, & Verhetsel, 2018).
ΚΕΦΑΛΑΙΟ 3: ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ, ΛΕΙΤΟΥΡΓΙΕΣ ΚΑΙ ΔΕΙΚΤΕΣ ΤΩΝ ΕΞΥΠΝΩΝ ΛΙΜΑΝΙΩΝ

Έξυπνο λιμάνι (SMART PORT)

Όσο έξυπνο λιμάνι θεωρείται το λιμάνι που εφαρμόζει τεχνολογίες όπως Internet of Things (IoT), Artificial Intelligence (AI), Blockchain και Big Data για να γίνει περισσότερο αποτελεσματικό και ικανό να χειρίζεται μεγαλύτερους όγκους εμπορευμάτων (Port Technology, 2019).

Οι τεχνολογίες που προαναφέρθηκαν και υποστηρίζουν τα έξυπνα λιμάνια είναι ψηφιακές καθώς απαρτίζονται από πολυμερή συστήματα τα οποία έχουν ως στόχο την βελτιστοποίηση βασικών υποδομών και διαδικασιών όπως τον χειρισμό εισερχόμενου φορτίου, την διαχείριση της κυκλοφορίας εντός του τερματικού, την διαχείριση των τελωνείων, την διατήρηση των προτύπων ασφάλειας καθώς και την διαχείριση της χρήσης απορριμμάτων και ενέργειας. Με αυτές τις τεχνολογίες, τα έξυπνα λιμάνια μπορούν επίσης να καταστούν πιο φιλικά προς το περιβάλλον.

Βέβαια, τα έξυπνα λιμάνια «καθοδηγούνται» από 3 βασικές προκλήσεις:

➢ Το επίπεδο της λειτουργικής αρτιότητας του τερματικού
➢ Τις προκλήσεις από την εξωτερική αγορά
➢ Τις νέες επιχειρηματικές ευκαιρίες που δημιουργούνται

Συνοπτικά, η σύνδεση των τεχνολογιών (π.χ. AI, IoT και AIS) σημαίνει ότι οι παίκτες οι οποίοι αποτελούν την λιμενική βιομηχανία μπορούν να έχουν πρόσβαση σε όλες τις πληροφορίες που χρειάζονται για τα πλοία που βρίσκονται στη θάλασσα: όπως για παράδειγμα την τοποθεσία, το φορτίο, τα δεδομένα πληρώματος, τις κλήσεις λιμένων, την ταχύτητα των πλοίων κ.λπ. Με λίγα λόγια μια νέα εποχή ξεκινά στη ναυτιλία, στην οποία σχεδόν όλη η διαδικασία της εφοδιαστικής αλυσίδας θα γίνει πιο διαφανής και προβλέψιμη (Port of Rotterdam, British Ports Association Port
Αυτό θα έχει ως εύλογο αποτέλεσμα, να αλλάξει ο τρόπος με τον οποίο λαμβάνονται οι αποφάσεις.

Καθώς κατευθυνόμαστε προς το υψηλότερο επίπεδο ψηφιακής ωριμότητας, μπορούμε να τονίσουμε ότι θα αποτελέσει μια πρόκληση για όλους τους εμπλεκόμενους. Για παράδειγμα, τα λιμάνια θα πρέπει να εξειδικεύουν συζητήσεις σχετικά με την ανταλλαγή πληροφοριών με τους ανταγωνιστές τους. Επιπλέον, θα πρέπει να αναπτυχθούν παγκόσμια πρότυπα για να καταστεί δυνατή η παρακολούθηση της διαδικασίας logistics από την παραγωγή έως το τελικό προϊόν στο ράφι (Port of Rotterdam, British Ports Association Port Futures, 2019).

Δίκτυο Έξυπνων Λιμανιών (Smart Port Network)

Πιο συγκεκριμένα σχετικά με τον μετασχηματισμό των λιμανιών, το σημαντικότερο πλεονέκτημα του έξυπνου μετασχηματισμού λιμένων είναι η συμμετοχή σε ένα ευρύτερο δίκτυο κόμβων που είναι εξίσου ψηφιοποιημένοι και με μεγάλες προσδοκίες για το μέλλον. Εν συντομία αναφέρόμαστε σε ένα Δίκτυο Έξυπνων Λιμανιών (Smart Port Network) (Port Technology, 2019).

Ο βέλτιστος τρόπος για να πραγματοποιήσει ένα λιμάνι κάτι τέτοιο είναι μέσω της ψηφιοποίησης μεμονωμένων μερών και της διοίκησης σε μια κοινότητα λιμένων.

Μόλις πραγματοποιηθεί αυτό το βήμα, οι εκάστοτε παίκτες της λιμενικής βιομηχανίας μπορούν να συνδεθούν μεταξύ τους για να σχηματίσουν ένα ολοκληρωμένο δίκτυο συστημάτων, όπου θα συνεργάζονται για την ανταλλαγή δεδομένων και τη βελτίωση της αποτελεσματικότητας των συλλογικών τους λειτουργιών.

Αυτό θα αποτελέσει την βάση μιας παγκόσμιας εφοδιαστικής αλυσίδας και ενός ευρύτερου δικτύου κόμβων, με άλλα λόγια ενός Smart Port Network, το οποίο θα βελτιστοποιεί ένα πλήθος από τρόπους μεταφοράς εμπορευμάτων και θα επιτρέπει σε όλους τους συμμετέχοντες να επωφεληθούν από το χαμηλότερο κόστος και τις...
γρηγορότερες ταχύτητες παράδοσης, αυξάνοντας έτσι την ανταγωνιστικότητα και οδηγώντας σε περαιτέρω καινοτομία όσον αφορά το συγκεκριμένο τομέα.

Επομένως, συμπεραίνουμε ότι, η ψηφιοποίηση (digitalization) είναι μια σημαντική σύχρονη τάση η οποία έχει ως αποτέλεσμα την οικονομική, περιβαλλοντική και κοινωνική προστιθέμενη αξία. Όλα τα λιμάνια και οι τερματικοί καθώς και οι ναυτιλιακές εταιρίες, ήδη αντιλαμβάνονται την ανάγκη στροφής προς αυτή την κατεύθυνση.

Η ψηφιοποίηση των λιμανιών αποτελεί ήδη ένα βασικό εργαλείο για την αύξηση της ανταγωνιστικότητας αλλά δεν αφορά μόνο τους διαχειριστές μεγάλων τερματικών, καθώς υπάρχουν συγκεκριμένες ευκαιρίες και για μικρότερα λιμάνια. Ειδικότερα, τα μικρότερα -σε όγκο διακίνησης εμπορευμάτων- λιμάνια, έχουν την δυνατότητα να επωφεληθούν από την ψηφιοποίηση ενισχύοντας έτσι την αποδοτικότητα όλου του λιμανιού. Ένα από τα παραδείγματα της εφαρμογής αυτής, είναι η αύξηση της χωρητικότητας του τερματικού και παράλληλα η βελτίωση της εξυπηρέτησης χωρίς να χρειάζεται να επενδυθούν πολλά χρήματα σε υποδομές. Ωστόσο, η μετάβαση αυτή είναι δύσκολη και περίπλοκη και θα πρέπει να συμβεί βήμα προς βήμα έτσι ώστε η διαδικασία να είναι διαχειρίσιμη και να μπορούν όλα τα μέρη που απαρτίζουν την λιμενική κοινότητα να συμβαδίσουν (Port of Rotterdam, British Ports Association Port Futures, 2019).

Τεχνολογικό άλμα

Με βάση τα παραπάνω, οι έξυπνες τεχνολογίες αναμένεται να εισέλθουν στην παγκόσμια ναυτιλιακή βιομηχανία με διαφορετικές ταχύτητες ανάλογα με το τμήμα, την εφαρμογή και το κανονιστικό πλαίσιο. Προς το παρόν, οι περισσότερες από τις λύσεις που προσφέρει η ψηφιοποίηση δεν έχουν εφαρμοστεί στα περισσότερα λιμάνια. Ωστόσο, για να επιτευχθεί η βελτιστοποίηση των λειτουργιών και των διαδικασιών απαιτείται ενσωμάτωση και ανταλλαγή δεδομένων μεταξύ των πολλών και διαφορετικών αντιπροσώπων (Wärtsilä, 2017).
Βέβαια, απαραίτητη προϋπόθεση σε αυτό το βήμα είναι η αλλαγή της νοοτροπίας. Πιο συγκεκριμένα, οι πελάτες από την μεριά τους θα πρέπει να είναι πρόθυμοι και σε θέση να μοιραστούν τις πληροφορίες και τα στοιχεία που διαθέτουν με τρίτους. Κάτι τέτοιο όπως καταλαβαίνουμε, αποτελεί για τη ναυτιλιακή βιομηχανία μια πρόκληση καθώς η πληροφόρηση είναι ύψιστης σημασίας. Επομένως, πρέπει να είναι πεπεισμένοι ότι οι πληροφορίες που μοιράζονται μπορούν να μετατραπούν σε αξία για τον εαυτό τους αλλά και για Ολόκληρη την ναυτιλιακή βιομηχανία.

Τέλος, το κύριο ερώτημα που απασχολεί τους περισσότερους στην ναυτιλιακή βιομηχανία είναι ο χρόνος που θα χρειαστεί για να πραγματοποιηθεί κάτι τέτοιο σε παγκόσμια κλίμακα αλλά και ο τρόπος με τον οποίο θα επιτευχθεί αυτό το εγχείρημα.

Η λιμενική βιομηχανία επομένως εργάζεται για την δημιουργία ενός παγκόσμιου δικτύου έξυπνων λιμανιών. Η επίτευξη ενός τέτοιου εγχειρήματος θα απαιτήσει την προθυμία συνεργασίας μεταξύ των λιμένων αλλά και ταυτόχρονα την αμοιβαία εμπιστοσύνη. Ακόμη, οι ανταγωνιστές θα πρέπει να μοιραστούν πληροφορίες για να δώσουν στον τελικό πελάτη περισσότερη διορατικότητα σχετικά με τις θαλάσσιες εμπορευματικές μεταφορές, όπου αυτή την στιγμή υπάρχει μικρή διαφάνεια.

Smart Port Index

Με λίγα λόγια, ένα έξυπνο λιμάνι διαθέτει όλη την υποδομή και την τεχνολογία πληροφοριών, αλλά και τις πιο πρόσφατες τεχνολογίες, όσον αφορά τις τηλεπικοινωνίες τόσο ηλεκτρονικές όσο και μηχανικές. Σαν αποτέλεσμα των παραπάνω στοιχείων, ένα έξυπνο λιμάνι συγκεντρώνει καλύτερα καταρτισμένο και εξειδικευμένο εργατικό δυναμικό, διαθέτει έξυπνες υποδομές και αυτοματοποίηση για να διευκολύνει την ανάπτυξη και την ανταλλαγή γνώσεων, βελτιστοποιεί τις λειτουργίες των λιμένων, βελτιώνει την ανθεκτικότητα αυτών και οδηγεί σε μια βιώσιμη ανάπτυξη καθώς εγγυάται ασφαλειάς δραστηριότητες και λειτουργίες.
Για να υπάρξει όμως μια αξιολόγηση των αποδόσεων και άλλων παραμέτρων αυτών των λιμανιών, υπάρχουν ορισμένοι δείκτες. Ειδικότερα, οι δείκτες που αφορούν τα έξυπνα λιμάνια ονομάζονται Smart Port Indexes (SPI) και έχουν ως στόχο να βελτιώσουν την ανθεκτικότητα και τη βιωσιμότητά τους, βασιζόμενοι σε βασικούς δείκτες απόδοσης Key Performance Indicators (KPIs). Αυτοί οι βασικοί δείκτες απόδοσης οργανώνονται γύρω από τέσσερις βασικούς τομείς δραστηριότητας ενός έξυπνου λιμανιού: λειτουργίες, περιβάλλον, ενέργεια, ασφάλεια και προστασία (Molavi, 2019).

Οι κατευθύνσεις των έξυπνων λιμανιών μπορούν ταξινομηθούν σε 2 κατηγορίες σε παγκόσμιο επίπεδο:

1) Κατευθύνσεις πολλαπλών χρήσεων
2) Στοχευμένες κατευθύνσεις

Κατευθύνσεις πολλαπλών χρήσεων (Smart Port Multipurpose Initiatives)

Σε αυτή την κατηγορία μπορούν να συμπεριληφθούν πρακτικές με ολοκληρωμένα μακροπρόθεσμα σχέδια καθώς και στρατηγικές που καλύπτουν μια πληθώρα πτυχών των λιμενικών δραστηριοτήτων. Να σημειωθεί ότι οι παραπάνω πρακτικές συνήθως υιοθετούνται από μεγάλα λιμάνια ή ενώσεις.

Πιο συγκεκριμένα, σαν αρχικό βήμα οι λιμενικές αρχές εντοπίζουν και αξιολογούν τα τρέχοντα και πιθανά μελλοντικά προβλήματα ενώ παράλληλα εντοπίζουν πιθανές λύσεις για την εξάλειψή τους ή την αποφυγή τους. Ως απώτερος στόχος των παραπάνω δράσεων, ορίζεται η ανάπτυξη της εφοδιαστικής αλυσίδας και ορισμένων λειτουργικών μέσω του αυτοματισμού και την διάδοση της τεχνολογίας ή μέσω της τροποποίησης στρατηγικών και πολιτικών που ήδη υιοθετεί το λιμάνι.
Στοχευμένες κατευθύνσεις (Smart Port Targeted Initiatives)

Σχετικά με τις στοχευμένες κατευθύνσεις στα έξυπνα λιμάνια, αυτές στοχεύουν στην εξάλειψη συγκεκριμένων εμποδίων που μπορεί να προκύψουν στα λιμάνια. Αυτές οι πρωτοβουλίες εστιάζουν σε μεγάλο βαθμό βαθμίδα σε α) εφαρμογές τεχνολογίας πληροφοριών και επικοινωνιών (Information and Communication Technology (ICT)) ειδικού σκοπού και β) προσεγγίσεις που βασίζονται σε κανονισμούς με στόχο την ρύθμιση των έξυπνων λιμένων.

Αξίζει να σημειωθεί σε αυτό το σημείο ότι, οι ΤΠΕ συμβάλλουν σημαντικά στην τάση, που τα τελευταία χρόνια έχει λάβει την ονομασία έξυπνα λιμάνια και αυτό διότι οι πρωτοβουλίες εστιάζουν στην ανταλλαγή δεδομένων αλλά και στην ανάλυση πληροφοριών που οδηγούν στην βελτίωση των λειτουργιών. Αυτή η ενεργειακή απόδοση καθώς και της περιβαλλοντικής βιωσιμότητας.

SmartPort Platform

Η SmartPort platform αποτελεί ακόμη ένα εργαλείο, το οποίο έχει κατανεμημένη αρχιτεκτονική και εκτελεί συλλογή δεδομένων των αισθητήρων των έξυπνων λιμανιών, οπτικοποίηση δεδομένων και ανάλυση δεδομένων. Αυτή η πλατφόρμα ουσιαστικά διευκολύνει την επεξεργασία μεγάλου όγκου δεδομένων που λαμβάνει από τους αισθητήρες, οι οποίοι καταγράφουν περιβαλλοντικές και δυναμικές παραμέτρους για τα πλοία (Fernández, 2016).

Σύμφωνα με τον παρακάτω πίνακα, γίνεται η ταξινόμηση των τομέων δραστηριότητας του έξυπνου λιμανιού αλλά και των υπό-τομέων. Ειδικότερα, ένα έξυπνο λιμάνι αποτελείται από τέσσερις κύριους τομείς δραστηριότητας: λειτουργίες, περιβάλλον, ενέργεια και ασφάλεια.
<table>
<thead>
<tr>
<th>Τομείς</th>
<th>Υπό-τομείς</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Παραγωγικότητα</td>
<td>Ο βαθμός στον οποίο οι λιμενικές λειτουργίες εκτελούνται αποτελεσματικά εντός των ορίων του χρόνου, του προϋπολογισμού, του χώρου και των διαθέσιμων εγκαταστάσεων.</td>
<td></td>
</tr>
<tr>
<td>Αυτοματοποίηση</td>
<td>Ο αυτοματισμός είναι η χρήση διαφόρων συστημάτων ελέγχου (σύνολο συσκευών που διαχειρίζεται τη συμπεριφορά άλλων συσκευών ή συστημάτων) για τον λειτουργικό εξοπλισμό με ελάχιστη ή μειωμένη ανθρώπινη παρέμβαση.</td>
<td></td>
</tr>
<tr>
<td>Περιγραφή Εξυπνών Εγκαταστάσεων</td>
<td>Ευφυής υποδομή σημαίνει η χρήση τεχνολογιών, υλικού και λογισμικού από το λιμάνι με στόχο την αύξηση της αποδοτικότητας και της βιωσιμότητας.</td>
<td></td>
</tr>
<tr>
<td>Συστήματα περιβαλλοντικής διαχείρισης</td>
<td>Τα συστήματα περιβαλλοντικής διαχείρισης (EMS) είναι μέσα που βοηθούν τους οργανισμούς να βελτιώσουν την περιβαλλοντική τους απόδοση. Ο στόχος αυτός επιτυγχάνεται μέσω της παρατήρησης και του ελέγχου των λιμενικών επιχειρήσεων σε σχέση με τις περιβαλλοντικές τους επιπτώσεις.</td>
<td></td>
</tr>
<tr>
<td>Ελεγχός εκπομπών και ρύπων</td>
<td>Οι λιμενικές δραστηριότητες και η ναυτιλιακή βιομηχανία μπορούν να προκαλέσουν τρεις κύριους...</td>
<td></td>
</tr>
<tr>
<td>Διαχείριση αποβλήτων</td>
<td>Οι λιμένες λαμβάνουν μια αξιοσημείωτη ποσότητα αποβλήτων, οι πηγές των οποίων είναι λιμενικές δραστηριότητες και σκάφη.</td>
<td></td>
</tr>
<tr>
<td>Διαχείριση νερού</td>
<td>Το νερό είναι ζωτικής σημασίας πόρος τόσο για την υγεία των ανθρώπων όσο και για τα άλλα είδη, επομένως η παρακολούθηση και ο έλεγχος της ποιότητας του νερού πρέπει να αποτελούν μέρος των λιμενικών σχεδίων και στρατηγικών.</td>
<td></td>
</tr>
<tr>
<td>Ενέργεια</td>
<td>Αρκετοί παράγοντες επηρεάζουν την κατανάλωση ενέργειας ενός λιμένα. Αυτά τα στοιχεία θα μπορούσαν να χωριστούν σε δύο κατηγορίες, άμεσους και έμμεσους χρήστες ενέργειας. Και για τις δύο ομάδες, πρέπει να προσδιοριστούν δυνατότητες εξοικονόμησης.</td>
<td></td>
</tr>
<tr>
<td>Ενέργεια</td>
<td>Η ανανεώσιμη ενέργεια είναι αναπληρώσιμη ενέργεια που παράγεται από φυσικές διεργασίες. Υπάρχουν σημαντικές δυνατότητες υλοποίησης ανανεώσιμων πηγών ενέργειας στα λιμάνια. Αυτό βοηθά στη μερική ή ολική κάλυψη της ζήτησης ενέργειας του λιμένα και μειώνει σημαντικά τις ρυπάνσεις.</td>
<td></td>
</tr>
<tr>
<td>Ενέργεια</td>
<td>Οι λιμένες πρέπει να προσδιορίζουν στρατηγικές και δραστηριότητες διαχείρισης ενέργειας για να κάνουν αποτελεσματική την χρήση της διαθέσιμης ενέργειας.</td>
<td></td>
</tr>
</tbody>
</table>
Συστήματα διαχείρισης ασφάλειας

Το Σύστημα Διαχείρισης Ασφάλειας (SMS) είναι ένα ολοκληρωμένο σύστημα διαχείρισης επιχειρήσεων που έχει σχεδιαστεί για τη διαχείριση των αρχών ασφάλειας στο χώρο εργασίας. Επιπρόσθετα, ένα σύστημα διαχείρισης ασφάλειας εντοπίζει πιθανές απειλές για το λιμάνι και καθιερώνει, εφαρμόζει, παρακολουθεί, αναθεωρεί και διατηρεί όλες τις κατάλληλες ενέργειες για να παρέχει διασφάλιση για τον αποτελεσματικό χειρισμό των κινδύνων ασφάλειας.

Η καθιέρωση ενός ολοκληρωμένου συστήματος παρακολούθησης και βελτιστοποίησης που βασίζεται στο πιο πρόσφατο λογισμικό και υλικό διευκολύνει την επίτευξη βελτιωμένης ασφάλειας και ασφάλειας στην περιοχή του λιμένα.

Πηγή: (MedMaritime SMART Port, 2016)

Λειτουργίες-Εργασίες

Αρχικά πριν αναφερθούμε στις λειτουργίες, πρέπει να επισημάνουμε ότι οι τερματικοί υποδέχονται σε καθημερινή βάση διαφορετικούς τύπους πλοίων, όπου στον καθένα από αυτούς απαιτείται διαφορετικός χειρισμός, συμπεριλαμβανομένων των πλοίων μεταφοράς εμπορευματοκιβωτίων, των κρουαζιερόπλοιων, των δεξιομεταφορέων, των δεξιομεταφορέων, των πλοίων RoRo, των πλοίων χύδην φορτίων και των πλοίων ψυγείων (Reefers).

Η κύρια λειτουργία του λιμένα λοιπόν, αφορά την φόρτωση και εκφόρτωση των εμπορευμάτων των πλοίων, τον χειρισμό και την μεταφορά του φορτίου σε αποθήκες ή άλλους προορισμούς.
Ένα έξυπνο λιμάνι επομένως είναι σε θέση να εφαρμόζει τεχνολογίες, οι οποίες μαζί με την υιοθέτηση καινοτόμων και αποτελεσματικών μοντέλων διαχείρισης αυξάνουν την παραγωγικότητα του τερματικού και ελαχιστοποιούν το σχετικό κόστος. Οι υποκατηγορίες των λειτουργιών περιλαμβάνουν την παραγωγικότητα, τον αυτοματισμό και τις έξυπνες υποδομές που θα αναλυθούν στην συνέχεια.

Παραγωγικότητα (Productivity)

Η παραγωγικότητα μιας λειτουργίας του λιμένα, θα μπορούσε να εκτιμηθεί μέσω της μέτρησης της παραγωγικότητας σε επτά πεδία: παραγωγικότητα ελλιμενισμού, παραγωγικότητα υποδομής, παραγωγικότητα γης, ικανότητα υποδοχής μεγάλης χωρητικότητας πλοίων, το μέγεθος και την εκμετάλλευση της μέγιστης χωρητικότητας, το επίπεδο διατροπικότητας και τέλος οι γραμμές οι οποίες συνδέονται με το λιμάνι (MedMaritime SMART Port, 2016).

Αυτοματοποίηση (Automation)

Σχετικά με τον αυτοματισμό των διαδικασιών του λιμανιού, τα αυτοματοποιημένα μηχανήματα μπορούν να αντικαταστήσουν σε μεγάλο βαθμό το ανθρώπινο εργατικό δυναμικό και να περιορίσουν σε σημαντικό ποσοστό τα υπάρχοντα ανθρώπινα λάθη, να βελτιώσουν τα ζητήματα ασφάλειας, να αποτρέψουν σε πολλές περιπτώσεις την συμφόρηση λιμένων καθώς και να αυξήσουν την γενικότερη αποτελεσματικότητα του τερματικού.

Έξυπνες Εγκαταστάσεις (Intelligent Infrastructure)

Η έξυπνη υποδομή (tóso hardware όσο και software) καθιστά τα λιμάνια αποδοτικότερα και πιο βιώσιμα και αυτό το επιτυγχάνει με την συλλογή επεξεργασία και κοινή χρήση δεδομένων σε πραγματικό χρόνο. Επιπρόσθετα, μπορεί να παρέχει πληροφορίες σχετικά με την κυκλοφορία των πλοίων και των οχημάτων, την γενικότερη λειτουργική κατάσταση που επικρατεί στους τερματικούς σταθμούς εμπορευματοκιβωτίων (ΣΕΜΠΟ) και άλλα δεδομένα που αφορούν για
παράδειγμα την διαχείριση των άδειων αποθηκών εμπορευματοκιβωτίων και των εγκαταστάσεων στάθμευσης οχημάτων (Hamburg Port Authority, 2016).

Οι έξυπνες υποδομές περιλαμβάνουν επομένως τις τακτικές βελτίωσης αλλά και τον εξοπλισμό των έξυπνων λιμανιών όπως:

- Αισθητήρες
- GPS / DGPS, RFID / OCR / LPR, GNSS, DGNSS, TOS
- Bluetooth
- WLAN
- Κινητές συσκευές
- Cloud
- Συστήματα κοινωτικών λιμένων
- Σύστημα παρακολούθησης λιμένων
- Σύστημα διαχείρισης οδικών λιμένων
- Έξυπνο σιδηρόδρομο
- Έξυπνη συντήρηση
- Διαχείριση κυκλοφορίας πλοίων
- Διαχείριση χώρων στάθμευσης και διαχείριση πύλης

Η γρήγορη και εύκολη ροή αυτών των πληροφοριών διευκολύνει την λήψη αποφάσεων από τις λιμενικές αρχές και τους πελάτες των λιμένων. Συνοψίζοντας, η χρήση αυτών των πληροφοριών και πρακτικών με τον καλύτερο δυνατό τρόπο οδηγεί σε αυξημένη παραγωγικότητα, μικρότερο κόστος, υψηλή ικανότητα ανταγωνισμού στην αγορά όσον αφορά το λιμάνι, λιγότερες εκπομπές αερίων και μεγαλύτερη ενεργειακή απόδοση.

Περιβάλλον

Αρχικά, οι λιμένες σε πολλές περιπτώσεις αποτελούν πηγές περιβαλλοντικής ρύπανσης μέσω χερσαίων και θαλάσσιων μεταφορών καθώς και βιομηχανικών δραστηριοτήτων.
Μερικές από τις πιο γνωστές περιβαλλοντικές επιπτώσεις των λιμενικών δραστηριοτήτων είναι: οι εκπομπές αέριων ρύπων, η ηχορύπανση, η ρύπανση και η κατανάλωση υδάτων και η παραγωγή αποβλήτων. Τα περιβαλλοντικά αυτά ζητήματα περιορίζουν την κοινωνική ευημερία, ενώ συγχρόνως αποτελούν απειλή για την επιβίωση των ζωντανών οργανισμών. Καθαυτό τον τρόπο, οι διαχειριστές λιμένων βρίσκονται αντιμέτωποι με προκλήσεις οι οποίες απειλούν και διακινδυνεύουν την βιωσιμότητα των λιμένων στη μελλοντική ανταγωνιστική εποχή.

Γι’ αυτό, τα έξυπνα λιμάνια έρχονται να φέρουν λύσεις σε ήδη υπάρχοντα περιβαλλοντικά προβλήματα. Ειδικότερα πάνω σε αυτό το θέμα, είναι εφικτή η αξιολόγηση της αποτελεσματικότητας και φιλικότητας προς το περιβάλλον των λιμένων μέσω της εξέτασης και διεύρυνσης των λιμενικών συστημάτων περιβαλλοντικής διαχείρισης (Environmental Management Systems (EMS)) αλλά και μέσω δραστηριοτήτων οι οποίες αποσκοπούν στην μείωση της ρύπανσης και στην καλύτερη διαχείριση των υδάτων και των αποβλήτων.

Διαχείριση Αποβλήτων (Waste Management)

Αναλυτικότερα στον τομέα του περιβάλλοντος, οι λιμένες λαμβάνουν μια αξιοσημείωτη ποσότητα αποβλήτων, οι πηγές των οποίων είναι οι λιμενικές δραστηριότητες και τα πλοία που προσεγγίζουν τον λιμένα. Η κατηγοριοποίηση των αποβλήτων που προέρχονται από τα πλοία, έχει καθιερωθεί από τον ΙΜΟ στη Σύμβαση MARPOL 73/78. Σύμφωνα με αυτή τη σύμβαση, έξι βασικοί τύποι αποβλήτων παράγονται από τα πλοία: λιπαρά απόβλητα, χύδην χημικά απόβλητα, επιβλαβείς ουσίες, απόβλητα σε συσκευασμένη μορφή, λύματα και σκουπίδια. Οι ίδιες κατηγορίες μπορούν να ληφθούν υπόψη για την ομαδοποίηση των αποβλήτων που δημιουργούνται από το λιμάνι (Olson, 1994).

Καθένας από τους προαναφερόμενους τύπους αποβλήτων εν τέλει, μπορεί να έχει επιβλαβείς επιπτώσεις για το περιβάλλον εάν δεν έχουν σχεδιαστεί σχέδια δράσης για το χειρισμό, την ανακύκλωση, την λήψη και την μείωση τους σε επιτρεπτές ποσότητες.
Ενέργεια

Περνώντας στον τομέα της ενέργειας, όπως είναι ευρέως γνωστό, το λιμάνι και οι δραστηριότητες που εμπεριέχονται στην εφοδιαστική αλυσίδα του τερματικού αποτελούν μεγάλους καταναλωτές ενέργειας.

Παράλληλα με την ανάπτυξη των λιμένων, την αύξηση της ζήτησης για θαλάσσιες δραστηριότητες μεταφορές και την αύξηση των βιομηχανικών δραστηριοτήτων στα λιμάνια, η ζήτηση για ενέργεια αυξάνεται ολοένα και περισσότερο. Λαμβάνοντας υπόψη τον περιορισμό των πηγών ενέργειας και τον προϋπολογισμό των λιμένων, το έξυπνο λιμάνι εξετάζει όλες τις δυνατές επιλογές και προσεγγίσεις έτσι ώστε να μειώσει την κατανάλωση ενέργειας. Επιπροσθέτως, όπως έχει προαναφερθεί, μπορεί να κάνει χρήση ανανεώσιμων πηγών ενέργειας τόσο για τη μείωση των εκπεμπόμενων ρύπων όσο και για ανεξαρτησία του λιμένα όσον αφορά τις πηγές ενέργειας (Port of Rotterdam, 2016).

Οι ανανεώσιμες πηγές ενέργειας διατίθενται όλο και περισσότερο στην περιοχή του λιμανιού. Ωστόσο, η παροχή αυτών, δεν είναι σταθερή καθώς η παραγωγή εξαρτάται σε μεγάλο βαθμό από τις καιρικές συνθήκες, όπως για παράδειγμα: την ένταση του ήλιου και του ανέμου. Η τρέχουσα δραστηριότητα στην περιοχή του λιμανιού βασίζεται σε μια συνεχή παροχή ενέργειας, οπότε η μετάβαση σε ανανεώσιμες πηγές ενέργειας οι οποίες δεν διαθέτουν σταθερή παροχή ενέργειας για το λιμάνι, συνεπάγεται μεγάλες προκλήσεις. Η ενοποίηση του συστήματος των κλασσικών πηγών ενέργειας καθώς και των ανανεώσιμων πηγών, καθιστά δυνατή την βελτιστοποίηση του κέρδους από την αειφόρο ενέργεια στην περιοχή του λιμένα, ακόμη και με κυμαινόμενη παροχή ενέργειας και διασφαλίζει την ομαλή συνέχεια των επιχειρηματικών διαδικασιών.

Οι ερευνητές διεξάγουν μελέτες για τη διατήρηση ενός σταθερού ενεργειακού συστήματος και την πρόληψη της έλλειψης ενέργειας. Για παράδειγμα, μερικές συγκεκριμένες λύσεις είναι: ένα βιομηχανικό συγκρότημα που αποθηκεύει πλεόνασμα ενέργειας για μελλοντική χρήση ή για χρήση σε κάποιο άλλο σημείο του λιμένα, όπως για παράδειγμα μια ψυκτική αποθήκη, η οποία έχει την ικανότητα να
μειώνει τα επίπεδα ψύξης ακόμα και όπου υπάρχει χαμηλή τροφοδοσία ενέργειας ή ένα εργοστάσιο χλωρίου το οποίο μέσω των ισχυρών ανέμων, θα διαθέτει μεγαλύτερη ισχύ, επιτυγχάνοντας με αυτόν τον τρόπο μεγαλύτερη παραγωγή (Smart Port, 2016-2020).

Οι διάφορες έρευνες που έχουν διεξαχθεί, ουσιαστικά καταλήγουν σε μοντέλα, αναλύσεις ή πρότυπα, τα οποία χρησιμεύουν ως πλατφόρμες προσομοίωσης πολλαπλών ενεργειών για τις ομάδες ενέργειας και χημείας. Ως απώτερος σκοπός είναι να επιτευχθεί η ενοποίηση της εφοδιαστικής αλυσίδας μέσω μιας διεπαγγελματικής υποδομής και στην συνέχεια να καταστεί εφικτή η οργάνωση των διαδικασιών παρακολούθησης, όπως η μεταφορά, με έξυπνο τρόπο.

Αποτελεσματική κατανάλωση ενέργειας

Η κατανάλωση ενέργειας στα λιμάνια μπορεί να χωριστεί σε δύο κατηγορίες:

Α) άμεση και Β) έμμεση κατανάλωση ενέργειας.

Α) Η άμεση κατανάλωση ενέργειας περιλαμβάνει τα συστήματα φωτισμού της περιοχής των λιμένων, γραφείων και άλλων εγκαταστάσεων όπως αυτές του γκαράζ.

Β) Η έμμεση κατανάλωση ενέργειας αφορά την εποχιακή διάταξη κατανάλωσης. Ουσιαστικά, εξαρτάται από τον όγκο των λιμενικών δραστηριοτήτων. Η έμμεση κατανάλωση περιλαμβάνει γερανούς και τον εσωτερικό στόλο του λιμένα (MedMaritime SMART Port, 2016).

Με λίγα λόγια, η βελτίωση των διεργασιών και του εξοπλισμού έχει ως σκοπό να εξοικονομείται ενέργεια και με αυτόν τον τρόπο να καθίσταται πιο αποδοτική η κατανάλωση ενέργειας σε χαμηλότερο κόστος.

Ασφάλεια και Προστασία

Σχετικά με θέματα ασφάλειας και προστασίας, τα λιμάνια μπορούν να χαρακτηριστούν ως ευάλωτα σε τέτοια θέματα, καθώς δυνητικά μπορεί να προκαλέσουν απώλειες όσον αφορά τα οφέλη, τη φήμη του λιμένα και την αποτελεσματικότητα των λειτουργιών (Fabiano, 2010).
Μερικά χαρακτηριστικά ζητήματα αυτών αποτελούν: οι άμεσες επιθέσεις από τρομοκράτες, οι ηλεκτρονικές επιθέσεις (χακάρισμα), η χρήση λιμένων ως αγωγού για την κυκλοφορία όπλων, οι φυσικοί κίνδυνοι και οι εγγενείς κίνδυνοι στις λιμενικές δραστηριότητες που σχετίζονται με την ασφάλεια.

Για να επιλύσει τα τυχόν ζητήματα και προβλήματα που μπορεί να προκύψουν, αναφορικά με την ασφάλεια και την προστασία, το έξυπνο λιμάνι, χρησιμοποιεί λύσεις και μεθόδους όπως κανονισμούς, πρότυπα ασφαλείας, εκπαίδευση των εργαζομένων και υπαλλήλων, περιοδικούς ελέγχους των εγκαταστάσεων, αξιολόγηση των κινδύνων, κατάλληλα και εκσυγχρονισμένα σχέδια και συστήματα παρακολούθησης για τον εντοπισμό τυχόν ζητημάτων ασφάλειας. Το σύνολο όλων αυτών των διεργασιών συμβάλλει καταλυτικά στην καλύτερη ετοιμότητα του λιμανιού και την παράλληλη βελτίωση της ανθεκτικότητας του.

Η συνολική απόδοση του έξυπνου λιμανιού υπό αυτή την έννοια είναι μετρήσιμη μέσω της διερεύνησης συστημάτων διαχείρισης ασφαλείας λιμένων, συστημάτων διαχείρισης ασφαλείας και ολοκληρωμένων συστημάτων παρακολούθησης και βελτιστοποίησης.

Συστήματα Διαχείρισης Ασφαλείας (Safety Management Systems)

Σε ότι αφορά τα θέματα ασφαλείας και προστασίας του λιμανιού, δεν θα πρέπει να παραληφθεί το Σύστημα Διαχείρισης Ασφαλείας (Safety Management System (SMS)). Ειδικότερα, αναφερόμαστε σε μια συστηματική και ολοκληρωμένη διαδικασία για τη διαχείριση των κινδύνων ασφαλείας, η οποία αποτελείται από πολιτική, οργάνωση, σχεδιασμό, εφαρμογή, αξιολόγηση και βελτίωση του λιμανιού. Το σύστημα περιέχει επίσης εγχειρίδια, εκπαίδευση και πρότυπα. Το SMS ισχύει για λιμενικές δραστηριότητες και εργασίες πλοίων.

Ως μια άλλη προσέγγιση για τη διασφάλιση της ασφάλειας στα λιμάνια, ο IMO έχει αναπτύξει τον Διεθνή Κώδικα Διαχείρισης Ασφαλείας (ISM). Εκτός από αυτόν τον κώδικα, ο IMO απαιτεί από όλα τα διεθνή επιβατηγά πλοία, πετρελαιοφόρα,
δεξαμενόπλοια χημικών, αερομεταφορείς φυσικού αερίου, χύδην μεταφορείς και φορτηγά πλοία 500 τόνων ή περισσότερων να εφαρμόζουν τον SMS.

Security Management Systems

Τα συστήματα διαχείρισης προστασίας (Security Management Systems) εντοπίζουν πιθανές απειλές για το λιμάνι και καθιερώνουν, εφαρμόζουν, παρακολουθούν, αναθεωρούν και διατηρούν κατάλληλες ενέργειες για τον αποτελεσματικό χειρισμό των κινδύνων ασφαλείας. Η εφαρμογή ενός συστήματος διαχείρισης ασφάλειας επιτυγχάνει την προστασία και διασφάλιση της ανθεκτικότητας έναντι των κινδύνων και της βελτιστοποίησης όσον αφορά το κόστος και τις απώλειες.

Οι λιμένες, θα πρέπει να είναι σε θέση να προσδιορίζουν τόσο τα περιουσιακά τους στοιχεία όσο και τις πιθανές εξωτερικές και εσωτερικές απειλές, να πραγματοποιούν ανάλυση του κινδύνου, να διαχειρίζονται κινδύνους και να βελτιώνουν την ετοιμότητα και την ευαισθητοποίηση των εργαζομένων ως σύνολο. Παράλληλα, απαιτείται σταθερή παρακολούθηση και αξιολόγηση της εκάστοτε πολιτικής για να υπάρχει ένα ενημερωμένο σύστημα διαχείρισης ασφαλείας. Αναφορικά με αυτό το πεδίο, ο Διεθνής Κώδικας Ασφάλειας Πλοίων και Λιμένων (ISPS) εισάγεται από τον IMO για την ενίσχυση της ασφάλειας στα λιμάνια.

Συμπέρασμα

Βάσει των παραπάνω στοιχείων, συμπεραίνουμε ότι τα λιμάνια θα είναι σε θέση να αναπτυχθούν βήμα προς βήμα σε έξυπνα λιμάνια. Ωστόσο, αν και η καινοτόμος τεχνολογία παίζει βασικό ρόλο σε αυτόν τον μετασχηματισμό, δεν αποτελεί αυτοσκοπό.

Θα πρέπει επίσης να δοθεί έμφαση στην κοινή χρήση των δεδομένων εντός και εκτός του λιμένα. Ειδικότερα, ανάλογα με τον βαθμό και το επίπεδο της ψηφιακής ωριμότητας, το εκάστοτε λιμάνι θα επωμίζεται και τα αντίστοιχα οφέλη. Με τη βοήθεια λοιπόν ενός μοντέλου που θα έχει αναπτύξει το λιμάνι, θα βρίσκεται σε
Θέση να προσδιορίσει τον βαθμό επίτευξης του ψηφιακού του μετασχηματισμού και τον καθορισμό των επόμενων βημάτων που θα χρειαστεί να ακολουθήσει. Όσο υψηλότερο είναι το επίπεδο ψηφιακής ωριμότητας ενός λιμένα, τόσο μεγαλύτερα τα οφέλη.

Συνοψίζοντας, η δημιουργία ενός ολοκληρωμένου συστήματος παρακολούθησης και βελτιστοποίησης που βασίζεται στο πιο πρόσφατο και τεχνολογικά εξελιγμένο λογισμικό και υλικό βελτιώνει την ασφάλεια και την προστασία της ευρύτερης περιοχής του λιμένα.

Ένα τέτοιο σύστημα συμπεριλαμβάνει κυρίως την σύνδεση hardware όπως κάμερες, ασύρματη τεχνολογία, αισθητήρες, ετικέτες RFID και την υποστήριξη από το απαραίτητο λογισμικό για συλλογή δεδομένων, οπτικοποίηση, ανάλυση και βελτιστοποίηση των λειτουργιών. Η αποθήκευση των δεδομένων και η ανάλυσή τους επομένως, αποφέρει πολλά οφέλη, μερικά από αυτά είναι τα εξής: ανταλλαγή πληροφοριών σε πραγματικό χρόνο μεταξύ διαφόρων λιμενικών τομέων, προσδιορισμός προληπτικών ενεργειών, αυξημένη ετοιμότητα, αποτελεσματική λήψη αποφάσεων ενώπιον απρόβλεπτων γεγονότων καθώς και ως εκ τούτου, ενίσχυση της ανθεκτικότητας του λιμανιού.

Smart Port Index (SPI)

Σε αυτήν την ενότητα, θα παρουσιαστούν συνοπτικά ορισμένοι Βασικοί Δείκτες Απόδοσης (KPIs) για την εκτίμηση της ευφυΐας ενός λιμένα. Ουσιαστικά θα χρησιμοποιήσουμε 4 δείκτες οι οποίοι παρατηρήθηκαν ως σημαντικοί για τη μέτρηση της απόδοσης του έξυπνου λιμανιού στους τομείς δραστηριότητάς που προαναφέρθηκαν και αναλύθηκαν στις προηγούμενες ενότητες και είναι οι εξής:

1. Λειτουργίες (Operations)
2. Ενέργεια (Energy)
3. Περιβάλλον (Environment)
4. Ασφάλεια και Προστασία (Safety and Security).
Έτσι, ο προτεινόμενος Smart Port Index (SPI) είναι ένας συνδυασμός αυτών των τεσσάρων δεικτών. Ειδικότερα, ο δείκτης SPI μπορεί να διευκολύνει την έγκαιρη ανίχνευση ελλείψεων σε οποιαδήποτε από τις τέσσερις περιοχές μέτρησης, έτσι ώστε να πραγματοποιηθούν διορθωτικές ενέργειες ή να επιταχυνθεί η βελτίωση της απόδοσης του τερματικού. Επιπλέον τα λιμάνια, μπορούν να χρησιμοποιήσουν τον συγκεκριμένο δείκτη SPI για να αξιολογήσουν τον εαυτό τους και να γνωρίζουν πού βρίσκονται σε σύγκριση με άλλα ανταγωνιστικά λιμάνια. Μπορούν επίσης να χρησιμοποιήσουν τα μέτρα έκβασης για να αναπτύξουν στρατηγικές και επιχειρησιακές αποφάσεις, έτσι ώστε να παραμείνουν ανταγωνιστικοί στην παγκόσμια θαλάσσια μεταφορά.

Βασικοί Δείκτες Απόδοσης Key Performance Indicators (KPIs)

Το πρώτο βήμα για την μέτρηση του SPI είναι να αναγνωριστεί ένα συγκεκριμένο σύνολο KPIs για να ποσοτικοποιηθεί η επίδοση του λιμένα, σε κάθε δραστηριότητα που συμπεριλαμβάνεται στον τομέα ενεργειών του έξυπνου λιμανιού. Για αυτόν τον σκοπό, έχουμε δανειστεί 68 Βασικούς Δείκτες Απόδοσης (KPIs) από (MedMaritime SMART Port, 2016).

KPI για τον ποσοτικό προσδιορισμό υπό-τομέων στην κατηγορία "Λειτουργίες"

1. Ετήσιος Αριθμός Εμπορευματοκιβωτίων (TEU) / Συνολική έκταση τερματικού
2. Ετήσιος Αριθμός Εμπορευματοκιβωτίων (TEU) / Συνολικός αποθηκευτικός χώρος ή έκταση γιάρδας
3. Ετήσιος Αριθμός Εμπορευματοκιβωτίων (TEU) / Αριθμός τερματικών εμπορευματοκιβωτίων
4. Ετήσια χωρητικότητα φορτίου / Συνολική έκταση τερματικού
5. Ετήσια χωρητικότητα φορτίου / Συνολικός χώρος αποθήκευσης ή γιάρδας
6. Ετήσιος Αριθμός Εμπορευματοκιβωτίων (TEU) / Χωρητικότητα των τερματικών εμπορευματοκιβωτίων (στατική χωρητικότητα)
7. Ποσοστό αυτοματοποιημένων γερανών γιάρδας
8. Χρήση της επιλογής διατροπικότητας-σιδηροδρόμων (Σύνολο Εμπορευματοκιβωτίων (TEU) που μεταφέρονται σιδηροδρομικώς / Σύνολο Εμπορευματοκιβωτίων (TEU))

9. Χρήση της επιλογής διατροπικότητας-δρόμου (Σύνολο Εμπορευματοκιβωτίων (TEU) που μεταφέρονται οδικώς / Σύνολο Εμπορευματοκιβωτίων (TEU))

ΚΠΙ για τον ποσοτικό προσδιορισμό υπό-τομέων στην κατηγορία "Περιβάλλον"

1. Αριθμός συστημάτων περιβαλλοντικής διαχείρισης βάσει διεθνών προτύπων (π.χ. EMAS ή ISO 14001) που εφαρμόζονται από λιμενικές αρχές και λιμενικούς φορείς / Συνολικός αριθμός χειριστών τερματικών

2. Τα συνολικά επικίνδυνα απόβλητα που παράγονται από τους φορείς εκμετάλλευσης τερματικών σταθμών ανά πηγές ανά TEUs (Απόβλητα από πλοία (δηλαδή απόβλητα MARPOL δεν περιλαμβάνονται)).

3. Συνολικά παραγόμενα απόβλητα που προορίζονται για εργασίες επαναχρησιμοποίησης, ανακύκλωσης και εξάτμισης ανά είδος αποβλήτων ανά συνολική επιφάνεια λιμένα (τόνοι / m2)

4. Σύνολο λυμάτων που παράγονται από τους τερματικούς σταθμούς ανά TEU (m3 / TEUs)

5. Λιμενικές δραστηριότητες που καλύπτονται από συστήματα περιβαλλοντικής διαχείρισης (%)

6. Αριθμός συστημάτων παρακολούθησης για την αξιολόγηση της ποιότητας του νερού (θερμοκρασία, αλατότητα, κ.λπ.) στην περιοχή του λιμένα ανά προβλήτα αποβάθρας

7. Εκπομπές αερίων θερμοκηπίου από όλες τις λιμενικές δραστηριότητες ανά συνολική λιμενική περιοχή

8. Συνολικές ετήσιες εκπομπές αερίων του θερμοκηπίου ανά TEU

9. Συνολικές ετήσιες εκπομπές αέρα

10. Ποσότητα ανακυκλωμένων αποβλήτων
KPI για τον ποσοτικό προσδιορισμό υπό-τομέων στην κατηγορία «Ενέργεια»

1. Συνολική κατανάλωση ενέργειας (πρωτογενής ενέργεια) από τον τερματικό ανά συνολική έκταση τερματικού (kWh / m²)
2. Συνολική κατανάλωση ενέργειας (πρωτογενής ενέργεια) ανά Εμπορευματοκιβώτιο προς συνολικό αριθμό Εμπορευματοκιβωτίων TEUs (kWh / TEU)
3. Συνολική κατανάλωση ενέργειας (πρωτογενής ενέργεια) από τον εξοπλισμό των τερματικών ανά συνολικό αριθμό Εμπορευματοκιβωτίων TEUs (kWh / TEU)
4. Συνολική κατανάλωση ενέργειας (πρωτογενής ενέργεια) από τον εξοπλισμό των τερματικών ανά συνολική έκταση τερματικού (kWh / m²)
5. Συνολική κατανάλωση ενέργειας (πρωτογενής ενέργεια) ανά γερανό ανά συνολικό αριθμό γερανών (kWh / γερανός)
6. Ποσοστό ενέργειας από ανανεώσιμους πόρους που διαχειρίζονται οι φορείς εκμετάλλευσης τερματικών
7. Αριθμός πιστοποιητικών ή ρυθμίσεων διαχείρισης ενέργειας σύμφωνα με οποιοδήποτε πρότυπο (ISO 50001 κ.λπ. (από λιμενική αρχή και φορείς εκμετάλλευσης τερματικών σταθμών) / Συνολικός αριθμός φορέων εκμετάλλευσης τερματικών
8. Λιμενικές δραστηριότητες που καλύπτονται από συστήματα διαχείρισης ενέργειας (%)
9. Εξοικονόμηση ενέργειας λόγω διατήρησης και βελτίωσης στην απόδοση

KPI για τον ποσοτικό προσδιορισμό υπό-τομέων στην κατηγορία "Ασφάλεια και προστασία"

1. Αριθμός ρυθμίσεων και πιστοποιητικών ασφαλείας
2. Ετήσιος αριθμός ναυτικών ατυχημάτων (σημαντικά ή περιστατικά σε περιοχές υπό τη δικαιοδοσία των λιμενικών αρχών)
3. Αριθμός παραβάσεων (κανονισμοί λιμένων, πρότυπα ασφάλειας της βιομηχανίας κ.λπ.)
4. Αριθμός διαρροών (ναυτικών ή βιομηχανικών)
5. Αριθμός πυρκαγιών και εκρήξεων (ναυτικών ή βιομηχανικών)
6. Επένδυση στην ασφάλεια
7. Αριθμός περιστατικών ασφαλείας λιμένα (διαφορετικοί τύποι παραβιάσεων, π.χ. πρόσβαση χωρίς εξουσιοδότηση, κλοπές και αξιώσεις, εργασίες χωρίς εξουσιοδότηση κ.λπ.)
8. Αριθμός ασκήσεων ασφαλείας
9. Συνολική απόδοση και ισχυρισμός ISPS
10. Αριθμός συναντήσεων ασφαλείας (αστυνομικές δυνάμεις και αρχές, εταιρείες υποδομών, ασφαλείας και τεχνολογικών εταιρειών, ναυτικά, εταιρείες, ναυτικοί πράκτορες και ξένες προμηθευτές)
11. Αριθμός επιθεωρήσεων ασφαλείας στον τερματικό
 (MedMaritime SMART Port, 2016)

Συμπεράσματα

Καταλήγουμε στο συμπέρασμα ότι, για να θεωρηθεί ένα λιμάνι έξυπνο, και αποδοτικό είναι απαραίτητο να διαπρέπει και να καινοτομεί στους τομείς που αναλυθήκαν παραπάνω (λειτουργίες, περιβάλλον, ενέργεια και ασφάλεια) και παράλληλα να διατηρεί ένα ανταγωνιστικό πλεονέκτημα. Ένα τέτοιο εγχείρημα, θα πρέπει να συμπεριλάβει ακόμα την υιοθέτηση τεχνολογιών οι οποίες απαιτούν την συνεργασία με άλλα λιμάνια και την ανταλλαγή πληροφοριών.

Παράλληλα όμως, είναι υψίστης σημασίας η παρακολούθηση και αξιολόγηση των Βασικών Δεικτών Απόδοσης (KPIs) που προαναφέρθηκαν, σε τακτά χρονικά διαστήματα για να διαπιστώθει εάν όντως ένα λιμάνι είναι έξυπνο και ως αποτέλεσμα, εάν είναι βιώσιμη και αποδοτικότερη η λειτουργία του. Επομένως,
είναι αρκετά περίπλοκος ο μετασχηματισμός ενός λιμανιού σε έξυπνο και επηρεάζεται τόσο από εσωτερικούς όσο και από εξωτερικούς παράγοντες.

Αξίζει να σημειωθεί, ότι τα τελευταία χρόνια έχουν πραγματοποιηθεί σημαντικά βήματα για τον μετασχηματισμό των λιμανίων. Κάποια από τα πιο αξιοσημείωτα είναι: Α) οι υψηλές επενδύσεις κεφαλαίων σε συστήματα και αυτοματισμούς που εκσυγχρονίζουν τις λειτουργίες του λιμανιού και αλλάζουν ραγδαία το λιμενικό περιβάλλον Β) Η αλλαγή του νομοθετικού πλαίσιο, μέσω κανονισμών που αφορούν την προστασία του περιβάλλοντος και την μείωση των εκπομπών ρύπων.

ΚΕΦΑΛΑΙΟ 4: ΤΕΧΝΟΛΟΓΙΕΣ ΕΞΥΠΝΩΝ ΛΙΜΑΝΙΩΝ ΠΑΡΟΝ ΚΑΙ ΑΜΜΕΣΟ ΜΕΛΛΟΝ

Αυτοματοποίηση (Automation)

Η βιομηχανική αυτοματοποίηση, πραγματοποιείται μέσα από μηχανικά, ηλεκτρικά, ηλεκτρονικά και υπολογιστικά συστήματα για τον έλεγχο του εξοπλισμού και των διαδικασιών και με αυτόν τον τρόπο μειώνει την ανθρώπινη συμμετοχή και ανάληψη στις εκάστοτε δραστηριότητες.

Πιο συγκεκριμένα, η αυτοματοποίηση σε ένα βιομηχανικό περιβάλλον έχει σαν αποτέλεσμα την τυποποίηση των επιδόσεων και του επίπεδο των υπηρεσιών, την μείωση της αβεβαιότητας αναφορικά με τους χρόνους ανταπόκρισης καθώς και την μείωση στα λειτουργικά κόστη και τον περιορισμό των ανθρώπινων σφαλμάτων.

Αυτοματοποίηση ΣΕΜΠΟ

Σχετικά με την ναυτιλιακή βιομηχανία και πιο συγκεκριμένα την λιμενική, οι μεγαλύτεροι εισηγητές της αυτοματοποίησης διαδικασιών που εκτελούνται είναι οι Σταθμοί Εμπορευματοκιβωτίων(ΣΕΜΠΟ). Οι ΣΕΜΠΟ επί του παρόντος, χρησιμοποιούν πληροφορικά συστήματα για να επιβλέψουν πλήρως τις δεδομένα που λαμβάνουν και τις μετακινήσεις των εμπορευματοκιβωτίων με στόχο την βελτιστοποίηση του τρόπου οργάνωσης και διοίκησης τους τερματικού.
Ορισμός EDI

Η ηλεκτρονική ανταλλαγή δεδομένων (EDI1) είναι η ανταλλαγή επιχειρηματικών εγγράφων από υπολογιστή σε υπολογιστή μέσω τυπικής ηλεκτρονικής μορφής μεταξύ επιχειρηματικών εταίρων. Μεταβαίνοντας σε μια εποχή, όπου η ανταλλαγή εγγράφων γίνεται όλο και περισσότερο σε ηλεκτρονική μορφή, οι επιχειρήσεις έχουν την δυνατότητα να απολαμβάνουν οφέλη όπως μειωμένο κόστος, αυξημένη ταχύτητα επεξεργασίας, μειωμένα σφάλματα και καλύτερες σχέσεις με επιχειρηματικούς εταίρους (EDI BASICS, 2020).

Το μεγαλύτερο πλήθος πληροφοριών επεξεργάζεται μέσω του προτύπου EDIFACT2, το οποίο επιτρέπει την ανταλλαγή πληροφοριών με τα πλοία, την βελτιστοποίηση του τερματικού, την παρακολούθηση των εμπορευματοκιβωτίων σε πραγματικό χρόνο και την βελτίωση της διαδικασίας φόρτωσης και εκφόρτωσης των εμπορευματοκιβωτίων καθώς και το στοιβασμά τους στους χώρους αποθήκευσης του λιμανιού. Ακόμα, το σύστημα EDI είναι διαθέσιμο και σε εξωτερικούς φορείς όπως λιμενικές αρχές, εταιρείες logistics, πράκτορες και πελάτες για την ενημέρωση τους αλλά και για την αποστολή εγγράφων (Conca, 2018).

Παράδειγμα STOWAGE PLAN

To σύστημα EDI χρησιμοποιείται και στην ναυτιλιακή βιομηχανία. Ένα χαρακτηριστικό παράδειγμα είναι το πλάνο στοιβασίας του φορτίου στα λιμάνια. Πιο συγκεκριμένα, την υλοποίηση του πλάνου της στοιβασίας, την αναλαμβάνουν οι διαχειριστές των τερματικών.

Η διαδικασία προσομοιώνεται από έναν υπολογιστή cell-by-cell ο οποίος χρησιμοποιεί ένα διχωριστικό ειδικό προγραμματιστικό λογισμικό για κάθε ένα από τα πλοία, έτσι ώστε όταν πραγματοποιηθεί η φόρτωση, οι απαιτούμενες τεχνικές συνθήκες για το πλοίο να έχουν επιτευχθεί σε όρους ευστάθειας του πλοίου, εκτοπίσματος και βυθίσματος.

1 Electronic data interchange
2 Electronic Data Interchange for Administration Commerce and Transport
Επιπροσθέτως, ο τερματικός σταθμός χρησιμοποιεί το ίδιο πλάνο στοιβασίας για να αναπτύξει τις ακολουθίες του λιμανιού, όσον αφορά την μετακίνηση των εξαγόμενων εμπορευματοκιβωτίων από τον χώρο αποθήκευσης στον χερσαίο γερανό και έπειτα στο πλοίο, αντιστοιχώντας τις έτσι με τα στοιχεία που έχει δώσει ο προγραμματιστής (Conca, 2018).

Όταν η διαδικασία έχει ολοκληρωθεί, ο τερματικός σταθμός υπολογίζει ξανά και συμπληρώνει το εξαγωγικό πλάνο στοιβασίας, στέλνοντας το εκ νέου σε EDI μορφή (BAPLIE) στον καπετάνιο/πλοίαρχο και στον planner έτσι ώστε να εξακριβώσει και να ενημερώσει την κατάσταση του πλοίου ενόψει της διαδικασίας φόρτωσης/εκφόρτωσης για το επόμενο λιμάνι (Conca, 2018).

Οφέλη από την χρήση του EDI

Επιγραμματικά, κάποια από τα οφέλη από την χρήση του EDI στην ναυτιλιακή βιομηχανία είναι τα ακόλουθα:

- Μειώνει τον χρόνο αναμονής φόρτωσης και εκφόρτωσης των εμπορευμάτων σε τερματικούς και τελωνεία.
- Ελαττώνει τους χρόνους αναχώρησης πλοίων.
- Βελτιώνει την απόδοση στον χώρο αποθήκευσης εμπορευμάτων (τερματικούς, αποθήκες).
- Βελτιστοποιεί την ασφάλεια των διοικητικών διαδικασιών.
- Μειώνει τα σφάλματα καθώς „παράγει“ πληροφορίες αυτόματα.
- Βελτιώνει τον έλεγχο των πληροφοριών και ως αποτέλεσμα των φορτίων.
- Προσφέρει όσων αφορά τα εμπορεύματα, προστιθέμενη ορατότητα, παρακολούθηση και ανιχνευσιμότητα.

3 Bayplan Including Empties
Terminal Operating System (TOS)

Το τερματικό λειτουργικό σύστημα (TOS) είναι ο κύριο όργανο τήρησης αρχείων, σχεδιασμού, ελέγχου και παρακολούθησης του σύγχρονου τερματικού σταθμού. Το TOS εξυπηρετεί, και εξυπηρετείται από, εργαζόμενους, σχεδιαστές, επιβλέποντες, διευθυντές, μεταφορείς, εταιρείες θαλάσσιων τακτικών γραμμών, σιδηροδρομικές γραμμές, επισκέπτες, ρυθμιστές και αναλυτές. Κάθε TOS βασίζεται σε τρία θεμέλια: την υποδομή, την βάση δεδομένων και την πλατφόρμα ανάπτυξης. Οι βασικές απαιτούμενες ιδιότητες οποιουδήποτε θεμελίων είναι η ανθεκτικότητα και η σταθερότητα, των οποίων η αντικατάσταση δεν είναι εφικτή.

Ως εκ τούτου, και τα τρία θεμέλια πρέπει να κριθούν με βάση ορισμένα κριτήρια:

- Σταθερότητα
- Υψηλή διαθεσιμότητα
- Απόδοση
- Επεκτασιμότητα
- Ασφάλεια
- Αφθονία
- Αποτελεσματική υποστήριξη πελατών
- Ευκολία εξυπηρέτησης
- Ακρίβεια
- Ευκολία ενσωμάτωσης
- Ευκολία προσαρμογής σε διάφορες καταστάσεις
- Διαθεσιμότητα έμπειρου και ειδικά καταρτισμένου εργατικού δυναμικού, το οποίο είναι σε θέση να διατηρήσει και να βελτιώσει τα παραπάνω στοιχεία (Port Technology, 2013).

Επιπροσθέτως, το τερματικό λειτουργικό σύστημα (TOS), αποτελεί βασικό μέρος της αλυσίδας εφοδιασμού και στοχεύει πρωτίστως στον έλεγχο της κίνησης και της αποθήκευσης διαφόρων τύπων φορτίου μέσα και γύρω από ένα τερματικό σταθμό ή λιμάνι εμπορευματοκιβωτίων.
Τα συστήματα επιτρέπουν επίσης την καλύτερη χρήση και προγραμματισμό των περιουσιακών στοιχείων, όπως για παράδειγμα το εργατικό δυναμικό και τον εξοπλισμό, το σχέδιο φόρτου εργασίας και των πληροφοριών που λαμβάνει το λιμάνι. Τα συγκεκριμένα συστήματα συχνά χρησιμοποιούν τεχνολογίες όπως το Διαδίκτυο, τα ασύρματα LAN και την αναγνώριση ραδιοσυχνοτήτων (RFID⁴) για την αποτελεσματικότερη παρακολούθηση της ροής των φορτίων στον τερματικό.

Τα δεδομένα ανταλλάσσονται είτε ομαδικώς συγχρονισμένα, είτε με την ασύρματη μετάδοσή τους σε πραγματικό χρόνο σε μια κεντρική βάση δεδομένων. Στη συνέχεια, η βάση δεδομένων μπορεί να παρέχει χρήσιμες αναφορές σχετικά με την κατάσταση και την τοποθεσία των εμπορευμάτων.

Ο στόχος ενός τερματικού λειτουργικού συστήματος επομένως, είναι να παρέχει ένα σύνολο μηχανογραφημένων διαδικασιών για τη διαχείριση φορτίου, μηχανημάτων και ατόμων εντός του τερματικού, έτσι ώστε να είναι εφικτή η ανεμπόδιστη σύνδεση των παραπάνω στοιχείων για την αποτελεσματική διαχείριση του λιμανιού. Τέλος, τα συγκεκριμένα συστήματα μπορούν να σταθούν ως αυτόνομα συστήματα, να διαχειριστούν σαν υπηρεσίες ή να χρησιμοποιούν τεχνολογίες νέφους (cloud).

Σταθμοί Εμπορευματοκιβωτίων (Container terminals)

Συνεχίζοντας στον ναυτιλιακό κλάδο, εντοπίζουμε το μεγαλύτερο επίπεδο αυτοματισμού στα λιμάνια και πιο συγκεκριμένα στους Σταθμούς Εμπορευματοκιβωτίων (ΣΕΜΠΟ). Ο λόγος είναι διότι οι τερματικοί αυτοί έχουν ορισμένα χαρακτηριστικά, που τους δίνουν τη δυνατότητα να επιτύχουν ένα πολύ υψηλότερο επίπεδο συστηματοποίησης σε σχέση με άλλους τύπους εμπορευματικών τερματικών.

⁴ Radio-frequency identification
Μερικά από αυτά είναι:

- Η τυποποίηση των μέσων μεταφοράς των εμπορευματοκιβωτίων.
- Η τυποποίηση του τρόπου χειρισμού των εμπορευμάτων.
- Το υψηλό επίπεδο συναλλαγών που λαμβάνουν χώρα.
- Το υψηλό αντίκτυπο της τεχνολογίας στην κερδοφορία των τερματικών σταθμών.

Ακόμα, αυτό το επίπεδο τυποποίησης και εξειδίκευσης είναι το στοιχείο το οποίο επιτρέπει τον υψηλό βαθμό αυτοματοποίησης του εξοπλισμού και των διαδικασιών σε αυτού του είδους τις λιμενικές εγκαταστάσεις. Παράλληλα παρατηρείται ότι, ο προγραμματισμός και η διαχείριση αυτού του τύπου τερματικού σταθμού έρχεται σε αντίθεση με την εικόνα που επικρατεί όσον αφορά τους συμβατικούς τερματικούς σταθμούς.

Στις μέρες μας, όταν αναφερόμαστε σε αυτοματοποιημένα λιμάνια κάνουμε λόγο για Τερματικούς Σταθμούς Εμπορευματοκιβωτίων (ΣΕΜΠΟ), οι οποίοι έχουν αυτοματοποιήσει τις κινήσεις στην γιάρδα.

Πιο συγκεκριμένα, οι εργασίες της γερανογέφυρας PCT5 παραμένουν χειροκίνητες ενώ η αλληλεπίδραση μεταξύ των γερανών της γιάρδας και των μέσων μεταφοράς της χερσαίας μεταφοράς και παραλαβής πραγματοποιείται με τη βοήθεια τηλεχειριστών. Ωστόσο, αξίζει να σημειωθεί ότι αυτή αποτελεί μια από τις πολλές αυτοματοποιημένες δυνατότητες των Τερματικών Σταθμών Εμπορευματοκιβωτίων.

Automated και manual τερματικοί

Αναφορικά με το επίπεδο του αυτοματισμού στα λιμάνια, μια εύκολη διάκριση είναι αυτή των αυτοματοποιημένων και των μη-αυτοματοποιημένων (χειροκίνητων) λιμανιών. Παράλληλα όμως με αυτά υπάρχουν και τα ημι-αυτοματοποιημένα λιμάνι, όσον αφορά τις κύριες διαδικασίες μεταφοράς εμπορευματοκιβωτίων.

5 Port Container Terminal
Αρχικά, ο όρος των ημι-αυτοματοποιημένων τερματικών χρησιμοποιείται για τερματικούς όπου οι κινήσεις της γιάρδας είναι αυτοματοποιημένες και οι μεταφορές πραγματοποιούνται από συμβατικό εξοπλισμό ή το αντίθετο. Ωστόσο, ο όρος αυτός μπορεί να αναφέρεται και στην χρήση εξοπλισμού που ελέγχεται εξ αποστάσεως ή στην συστηματοποίηση ορισμένων λειτουργιών του εξοπλισμού μέσω μικρών ή μερικών αυτοματισμών (Martín-Soberón, Monfort, Sapiña, Monterde, & Calduch, 2014).

Συμπεραίνουμε επομένως από τα παραπάνω, ότι οι τερματικοί υιοθετούν πρακτικές αυτοματισμού τόσο στον εξοπλισμό που αφορά την μεταφορά και την αποθήκευση των εμπορευμάτων όσο και στην ανταλλαγή μεταξύ υποσυστημάτων του ίδιου του τερματικού. Η συγκεκριμένη πρακτική αποτελεί μια από τις ‘’τάσεις’’ του αυτοματισμού στους PCTs, καθώς η γενικότερη τάση κατευθύνεται προς υψηλότερα επίπεδα αυτοματισμού τα οποία υπερβαίνουν τα σύνορα των τερματικών και περιλαμβάνουν όλες τις διαδικασίες που λαμβάνουν χώρα στον τερματικό.

Ειδικότερα τα υψηλότερα επίπεδα αυτοματισμού αφορούν:

1. Τις πύλες (gates)
2. Την γιάρδα
3. Τους γερανούς προβλήτας

Η αυτοματοποιημένη τεχνολογία εξοπλισμού αποθήκευσης και μεταφοράς αποσκοπεί α) στο καλύτερο χειρισμό του αποθέματος των εμπορευματοκιβωτίων που βρίσκονται στην γιάρδα και β) στην παρακολούθηση του εξοπλισμού σε πραγματικό χρόνο.

Τα τελευταία χρόνια, έχει υπάρξει τεράστια πρόοδος όσον αφορά τον σχεδιασμό των αυτοματοποιημένων συστημάτων χειρισμού φορτίου, η οποία είναι ολοένα και πιο αυτόνομη σε λειτουργικούς και οικονομικούς όρους.
Πιο συγκεκριμένα, μερικοί από αυτούς συντίθενται από το συνδυασμό των παρακάτω εξοπλισμών:

- ASCs (Automatic Stacking Cranes) + AGVs (Automated Guided Vehicles),
- ASCs (Automatic Stacking Cranes) + ALVs (Automated Lifting Vehicles)
- ASCs (Automatic Stacking Cranes) + AShC (Automated Shuttle Carriers), μεταξύ άλλων.

Πίνακας 2: Αυτοματοποιημένοι (Main automated) (A)) και ημι-αυτοματοποιημένοι (semi-automated (S)) τερματικοί με χρονολογική σειρά.

<table>
<thead>
<tr>
<th>Τερματικός</th>
<th>Τύπος</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSA International – Singapur. Pasir Panjang Terminal (1997)</td>
<td>S*</td>
</tr>
<tr>
<td>HHLA—Hamburg. CT Altenwerder (CTA) (2001)</td>
<td>A</td>
</tr>
<tr>
<td>Patrick Stevedoring—Brisbane. Fishermans Island Terminal (2002)</td>
<td>A</td>
</tr>
<tr>
<td>Wan Hai—Tokyo. Ohi Terminal (2003/06)</td>
<td>S</td>
</tr>
<tr>
<td>Virginia International Terminal (VIT)—Portsmouth. VA Virginia int. Gateway</td>
<td>S</td>
</tr>
<tr>
<td>(2007)</td>
<td></td>
</tr>
<tr>
<td>ECT Europa Container Terminal—Rotterdam. Euromax terminal (2008)</td>
<td>A</td>
</tr>
<tr>
<td>Tobshima container berth (TCB) company—Nagoya. Tobishima Pier South</td>
<td>A</td>
</tr>
<tr>
<td>Terminal</td>
<td>Type</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Pusan Newport Co (DP World) — Busan. Pusan Newport (2009/12)</td>
<td>S</td>
</tr>
<tr>
<td>TPCT — Taipei Port Container Terminal (2010)</td>
<td>S</td>
</tr>
<tr>
<td>Yang Ming + Evergreen — Kaoshiung. Kao Ming Container Terminal (2010/11)</td>
<td>S</td>
</tr>
<tr>
<td>HHLA — Hamburg. CR Burchardkai (CTB) (2010/17)</td>
<td>S</td>
</tr>
<tr>
<td>Hutchinson Port Holdings — Barcelona. BEST (2012)</td>
<td>S</td>
</tr>
<tr>
<td>DP World — London Gateway 1, 2/3 (2013/2016)</td>
<td>S</td>
</tr>
<tr>
<td>Trapac Inc - Long Beach. Trapac (2014)</td>
<td>A</td>
</tr>
<tr>
<td>SSA — Colón Manzanillo Int. Terminal (2014)</td>
<td>S</td>
</tr>
<tr>
<td>Xiamen International Port Corp — Xiamen. Halcang + Fujiang (2014)</td>
<td>A</td>
</tr>
<tr>
<td>DP World — Brisbane (2014)</td>
<td>S</td>
</tr>
<tr>
<td>HPH — Brisbane Container Terminal (2014)</td>
<td>S</td>
</tr>
<tr>
<td>SICT HPH — Sydney Inter. Container Terminal (2014)</td>
<td>S</td>
</tr>
<tr>
<td>Lamong Bay Terminal/Petikemas Semarang — Surabaya. Pelindo III (2014/16)</td>
<td>S</td>
</tr>
<tr>
<td>APM Terminal — Rotterdam. APMT Maaskvlakte II (2015)</td>
<td>A</td>
</tr>
<tr>
<td>DP/World — Rotterdam World Gateway (2015)</td>
<td>A</td>
</tr>
<tr>
<td>Patrick Stevedoring — Sydney Autostrad (2015)</td>
<td>A</td>
</tr>
<tr>
<td>Port of Singapour Authority — PSA PPT 3-1a T%, 3-1b, 3-2b (2015/2016)</td>
<td>S*</td>
</tr>
</tbody>
</table>
Παρατηρούμε από τον παραπάνω πίνακα ότι ενώ από τις αρχές του 2000 μέχρι το 2010 οι περισσότεροι αυτοματοποιημένοι τερματικοί βρισκόταν στην Ευρώπη και πιο συγκεκριμένα στην Βόρεια Ευρώπη, όπου είχαν αναπτυχθεί με ραγδαίο βαθμό οι βαρίες βιομηχανίες της Ευρώπης όπως η αυτοκινητοβιομηχανία, η αεροναυπηγική, η βιομηχανία μετάλλων και χημικών. Μπορούμε να διακρίνουμε ακόμα ότι, μετά τα 2010 ξεκίνησε η αυτοματοποίηση πολλών τερματικών που βρισκόταν στην Ασία. Αυτό οφείλεται κυρίως στο φτηνό εργατικό δυναμικό και τις φθηνές πρώτες ύλες.

Πρακτική προσέγγιση

Εν κατακλείδι, ο στόχος των αυτοματοποιημένων τεχνολογιών είναι η μείωση της ανθρώπινης παρέμβασης στις λειτουργίες του τερματικού. Σύμφωνα με αυτή την βάση και ανάλογα με την εκάστοτε λειτουργία, οι συγκεκριμένες τεχνολογίες μπορούν να συνεισφέρουν σε:

α) αυτοματοποίηση των εργασιών που εκτελούνται

<table>
<thead>
<tr>
<th>Company/Location</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Beach CT Inc. - CT Middle Harbor (2016)</td>
<td>A</td>
</tr>
<tr>
<td>SSA Mexico – Tuxpan Port Terminal (TPT) (2016)</td>
<td>S</td>
</tr>
<tr>
<td>Hanjin Incheon Container Terminal – Incheon (2016)</td>
<td>S</td>
</tr>
<tr>
<td>APM Terminals - Veracruz Lázaro Cárdenas T2 (2016)</td>
<td>S</td>
</tr>
<tr>
<td>Peel Ports—Liverpool2 (2016)</td>
<td>S*</td>
</tr>
<tr>
<td>VICTCL/ICTSI—Melbourne. Victoria Int. CT (2016/17)</td>
<td>A</td>
</tr>
<tr>
<td>Shangai International Port Group—Shangai. Yangshan Fase 4 (2017)</td>
<td>A</td>
</tr>
<tr>
<td>QQCTN—Qingdao. Qianwai CT (2018)</td>
<td>A</td>
</tr>
<tr>
<td>APM Terminals—VADO. Liguere (2019)</td>
<td>S</td>
</tr>
<tr>
<td>APM Terminals—Tanger Med 2 (2019)</td>
<td>S</td>
</tr>
</tbody>
</table>

(A) – Αυτοματοποιημένοι Τερματικοί, (S) – Ημι-αυτοματοποιημένοι τερματικοί

Πηγή: Research Gate (Orive, 2020)
γ) αυτοματοποίηση της διαδικασίας λήψης αποφάσεων, αντίστοιχα.

Όσον αφορά την αυτοματοποίηση των εργασιών:

α) Αυτοματοποίηση των εργασιών

Ο αυτοματισμός των εργασιών που εκτελούνται συνίσταται στη μείωση της παρέμβασης των χειριστών εξοπλισμού στο χειρισμό κινήσεων, καθιστώντας έτσι την υποδομή και τον εξοπλισμό πιο αυτόνομο. Ακόμη και όταν υφίσταται μικρότερη κλίμακα αυτοματισμού του εξοπλισμού, είναι ικανή να εισάγει συστήματα βοήθειας για το χειρισμό λειτουργιών, αυξάνοντας έτσι την παραγωγικότητα και την ασφάλεια των λειτουργιών.

β) Αυτοματοποίηση της ροής πληροφοριών

Η αυτοματοποίηση της ροής πληροφοριών, βασίζεται στη μείωση των ανθρώπινων πόρων για την απόκτηση, την μετάδοση και την διαχείριση των διαδικασιών πληροφοριών που επιτρέπουν τη διεξαγωγή λειτουργιών, χρησιμοποιώντας συστήματα λογισμικού διασύνδεσης, επικοινωνιών και διαχείρισης πληροφοριών, αντίστοιχα. Επί του παρόντος, σχεδόν όλοι οι τερματοκινήτες, βασίζονται σε τεχνολογίες και εργαλεία που μπορούν να αυτοματοποιηθούν σε κάποιο βαθμό τις διαδικασίες διαχείρισης πληροφοριών τους, και ένα από αυτά είναι το τερματικό λειτουργικό σύστημα (TOS) που αναφέρθηκε προηγουμένως. Να τονισθεί σε αυτό το σημείο, ότι η πλήρης χειροκίνητη επεξεργασία των δεδομένων, με βάση τα τρέχοντα επίπεδα ροής πληροφοριών είναι απροσπέλαστη.

c) Αυτοματοποίηση της διαδικασίας λήψης αποφάσεων

Τέλος, η αυτοματοποίηση της διαδικασίας λήψης αποφάσεων συνίσταται στην άρση της παρέμβασης του ανθρώπινου παράγοντα όσον αφορά την διαδικασία
σχεδιασμού των λειτουργιών σε στρατηγικό, τακτικό και επιχειρησιακό επίπεδο (Martín-Soberón, Monfort, Sapiña, Monterde, & Calduch, 2014).

Για να επιτευχθεί αυτό, είναι απαραίτητο να γίνει χρήση εργαλείων λογισμικού, τα οποία θα μπορούν να λειτουργήσουν με το TOS και ως εκ τούτου να εισαχθούν κριτήρια απόφασης στο επίπεδο προγραμματισμού και διαχείρισης των λειτουργιών, καθώς και διαδικασίες για τη διαχείριση εξαιρέσεων.

Πλεονεκτήματα, μειονεκτήματα και προκλήσεις της αυτοματοποίησης των PCTs

Η αυτοματοποίηση των PCT είναι μια στρατηγική πρωτοβουλία που ανταποκρίνεται σε τρεις βασικές στρατηγικές ανάγκες της λιμενικής βιομηχανίας:

A) Βελτίωση της επιχειρησιακής απόδοσης του τερματικού
B) Αύξηση της ασφάλειας και της προστασίας
C) Συμβολή στην περιβαλλοντική βιωσιμότητα του

A) Βελτίωση της επιχειρησιακής απόδοσης του τερματικού (Improvement in operational performance)

Οι αυτοματοποιημένοι τερματικοί είναι πιο παραγωγικοί και επιτρέπουν την λειτουργία με αυξημένη χρήση αποβάθρας και γιάρδας, με αποτέλεσμα την βέλτιστη χρήση του διαθέσιμου χώρου και την αυξημένη χωρητικότητα εγκαταστάσεων (Martín-Soberón, Monfort, Sapiña, Monterde, & Calduch, 2014).

Αυτό καθίσταται δυνατό λόγω της εξάλειψης της αβεβαιότητας, με αποτέλεσμα πιο οργανωμένες και μεθοδολογικές λειτουργίες με μεγαλύτερη ικανότητα προτεραιότητας των λειτουργικών αλλαγών που είναι λιγότερο ευαίσθητες σε εξωτερικούς παράγοντες. Αυτό το εγχείρημα, επιτυγχάνεται χρησιμοποιώντας τους πόρους πιο αποτελεσματικά και διευκολύνοντας τον επιχειρησιακό έλεγχο, επιτρέποντας έτσι την λήψη αποφάσεων σε πραγματικό χρόνο και πραγματοποιώντας διεργασίες ελαχιστοποιώντας ταυτόχρονα την ανάγκη για εναπόθεση/ανακατανομή των εμπορευματοκιβωτίων.
B) Αύξηση της ασφάλειας και της προστασίας
Ο αυτοματισμός συμβάλλει επίσης στην αύξηση της ασφάλειας και προστασίας του προσωπικού και των λιμενικών εγκαταστάσεων. Οι διαδικασίες αυτοματισμού όχι μόνο αυξάνουν την ασφάλεια με τη μείωση των ανθρώπινων σφαλμάτων όσον αφορά τις λειτουργίες, αλλά συμβάλλουν σημαντικά στην μείωση των επιπτώσεων των πιθανών ατυχημάτων. Ακόμα, οι αυτοματισμοί -σε μικρότερο βαθμό- προκαλούν επίσης μείωση του αριθμού των ατυχημάτων, δεδομένου ότι τυποποιούν τον τρόπο διεξαγωγής των εργασιών, ενώ ελαχιστοποιούν την σημασία της επαγγελματικής ικανότητας των χειριστών.

C) Συμβολή στην περιβαλλοντική βιωσιμότητα του
Όσον αφορά τη συμβολή στην περιβαλλοντική αειφορία, παρόλο που ο αυτοματισμός έχει ουσιαστικά σχεδιαστεί για τη βελτίωση της παραγωγικότητας των PCT, έχει επίσης σημαντικό αντίκτυπο στη συνολική χρήση της ενεργειας των PCT. Από την άποψη της ενεργειακής απόδοσης, η αυτοματοποίηση ενός PCT αποτελεί μια από τις καλύτερες βελτιώσεις στη διαχείριση που μπορούν να εφαρμοστούν. Ο αυτοματισμός συμβάλλει στη βελτιστοποίηση των λειτουργιών σε όλες τις πτυχές, ελαχιστοποιώντας τις διαδρομές που πραγματοποιούνται από τον εξοπλισμό, άδειες διαδρομές φορτίων, εναπόθεση των εμπορευματοκιβωτίων κλπ., συμβάλλοντας άμεσα και σε σημαντικό βαθμό στη μείωση της χρήσης ενεργειας.

Από οικονομικής άποψης, η αυτοματοποίηση των PCT σημαίνει μείωση του μεταβλητού κόστους ανά εμπορευματοκιβώτιο(OPEX), καθώς το κόστος εργασίας μειώνεται με τη δημιουργία οικονομιών κλίμακας στις λειτουργίες και το κόστος συντήρησης μειώνεται επίσης σημαντικά (PEMA, 2012). Ωστόσο, ο αυτοματισμός απαιτεί μια μεγάλη επένδυση κεφαλαίου (CAPEX) για την απόκτηση λύσεων και την εκπαίδευση και κατάρτιση των ανθρώπινων πόρων.

Στον παρακάτω πίνακα μπορούμε να δούμε τα πλεονεκτήματα και τα μειονεκτήματα της χρήσης αυτοματισμού στους τερματικούς.
<table>
<thead>
<tr>
<th>Πίνακας 3: Πλεονεκτήματα και Μειονεκτήματα αυτοματισμού</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Λειτουργικά Λειτουργικά Λειτουργικά Λειτουργικά Λειτουργικά Λειτουργικά Λειτουργικά</td>
<td>Λειτουργικά Λειτουργικά Λειτουργικά Λειτουργικά Λειτουργικά Λειτουργικά</td>
</tr>
<tr>
<td>Πλεονεκτήματα</td>
<td>Μειονεκτήματα</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Αυξημένη λειτουργική παραγωγικότητα.</td>
<td>Λιγότερη ευελιξία για επιχειρησιακό σχεδιασμό.</td>
</tr>
<tr>
<td>Λειτουργεί με κατανομές και υψηλή πυκνότητα γιάρδας: προσφέρει περισσότερη χωρητικότητα με τον ίδιο χώρο.</td>
<td>Περισσότερη δυσκολία αντίδρασης σε ορισμένες περιπτώσεις</td>
</tr>
<tr>
<td>Αυξημένη ευελιξία προσαρμογής στις αιχμές της ζήτησης.</td>
<td></td>
</tr>
<tr>
<td>Πιο οργανωμένες και μεθοδικές λειτουργίες, μειώνοντας την αβεβαιότητα στους χρόνους ανταπόκρισης.</td>
<td></td>
</tr>
<tr>
<td>Επηρεάζεται λιγότερο από εξωτερικούς παράγοντες.</td>
<td></td>
</tr>
<tr>
<td>Αποτελεσματικότερη χρήση των πόρων.</td>
<td>Περισσότερη ευελιξία για επιχειρησιακό σχεδιασμό.</td>
</tr>
<tr>
<td>Περισσότερος έλεγχος των λειτουργιών δεδομένης της ύπαρξης συνεχούς επικοινωνίας μεταξύ συστημάτων ελέγχου και του εξοπλισμού, διευκολύνοντας έτσι τη διαδικασία λήψης αποφάσεων σε πραγματικό χρόνο.</td>
<td></td>
</tr>
<tr>
<td>Αύξηση της ασφάλειας των PCT</td>
<td></td>
</tr>
<tr>
<td>Δεδομένης της μείωσης των κινδύνων για το ανθρώπινο δυναμικό.</td>
<td></td>
</tr>
</tbody>
</table>
Ενσωμάτωση συστημάτων ασφαλείας.

Προβληματική Βελτιωτική

<table>
<thead>
<tr>
<th>Περιβαλλοντική Ειδικότητα</th>
<th>Λειτουργία με ηλεκτρικό εξοπλισμό (λιγότερη κατανάλωση, λιγότερες εκπομπές και λιγότερο θόρυβο).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Βέλτιστη χρήση των τρεχόντων χώρων (λιγότερες επεκτάσεις).</td>
<td></td>
</tr>
</tbody>
</table>

Απαιτείται μεγαλύτερη επένδυση κεφαλαίου.

Μείωση μεταβλητού

<table>
<thead>
<tr>
<th>Λειτουργικού κόστους</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μείωση λειτουργικού κόστους συντήρησης.</td>
</tr>
</tbody>
</table>

Προκλήσεις

<table>
<thead>
<tr>
<th>Στάδιο προγραμματισμού</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ο λιμενικός τομέας είναι παραδοσιακός και απρόθυμος να υποβληθεί σε ρίσκο, πράγμα που μεταφράζεται σε αντίσταση όταν έρχεται αντιμέτωπος με επενδύσεις που αφορούν την καινοτομία</td>
</tr>
<tr>
<td>Τα συνδικάτα είναι ιδιαίτερα ισχυρά στα λιμάνια, πράγμα που σημαίνει ότι ο αυτοματισμός μπορεί να εισαχθεί μόνο μετά τη σύναψη συμφωνιών μαζί τους ή όταν οι θέσεις εργασίας δεν διατρέχουν κίνδυνο.</td>
</tr>
</tbody>
</table>

Απότομο Στάδιο

| Έλλειψη πληροφοριών και εσφαλμένες πληροφορίες. |
| Απόλεια ευελιξίας στον επιχειρησιακό σχεδιασμό. |
| Υψηλές απαιτήσεις συντήρησης εξοπλισμού. |
| Αλληλεπίδραση πολλών συστημάτων, αυξάνοντας την πιθανότητα λάθους. |

Πηγή: (Martín-Soberón, Monfort, Sapiña, Monterde, & Calduch, 2014)
ΤΕΧΝΟΛΟΓΙΕΣ
COLD IRONING-Shore-to-Ship power (SSP)

Το Cold Ironing (ή αλλιώς παροχή ενέργειας από την στεριά ή ηλεκτρική ενέργεια από την στεριά) είναι η διαδικασία κατά την οποία τα πλοία συνδέονται με την ηλεκτρική πηγή ενέργειας που βρίσκεται στην στεριά αντί να γίνει χρήση των βοηθητικών γεννητριών για να παρέχουν ενέργεια, για τις ανάγκες ηλεκτρισμού του πλοίου. Έχει αποδειχθεί ότι η χρήση του cold ironing είναι αποτελεσματική στην μείωση εκπομπών αερίων, ατμοσφαιρικής ρύπανσης και είναι συχνή η χρήση της σε χώρες με υψηλή υπερυψωματική συγκέντρωση ενέργειας (Innes & Monios, 2018).

Η περίπτωση της σύνδεσης του πλοίου με τις ηλεκτρικές εγκαταστάσεις του λιμανιού, επιτρέπει την πλήρη διακοπή της λειτουργίας των γεννητριών και ουσιαστικά σταματά την ρύπανση που προέρχεται αποτελεί αποτελεσματική από τις εκπομπές του πλοίου, ειδικά σε πόλεις-λιμάνια όπου υποφέρουν από σαθρό αέρα (sooty air). Το Cold Ironing χρησιμοποιείται εδώ και αρκετές δεκαετίες από τον στρατό και τώρα καταβάλλονται σοβαρές προσπάθειες προώθησης και ανάπτυξης αυτής της τεχνικής σε παγκόσμιο επίπεδο στον τομέα της εμπορικής ναυτιλίας (PAPOUTSOGLOU, 2012).

Η ενέργεια που απαιτείται έτσι ώστε το πλοίο να συνεχίσει τις δραστηριότητες στο αγκυροβόλιο παρέχεται από διάφορες πηγές όπως: ηλεκτρικό δίκτυο του λιμανιού, ηλεκτροπαραγωγικός σταθμός ή ακόμα και μέσω κάποιας ανανεώσιμης πηγής ενέργειας. Η χρήση της τελευταίας από αυτές τις πηγές, είναι μικρότατη και από τις πιο φιλικές προς το περιβάλλον τεχνικές, που μπορεί να χρησιμοποιηθεί στην πρακτική του cold ironing, καθώς χρησιμοποιεί μη-ρυπογόνες πηγές ενέργειας, συμβάλλοντας έτσι δραστικά στην μείωση των αέριων εκπομπών/ρύπων (PAPOUTSOGLOU, 2012).
Στοιχεία CI

Παρά τα αδιαμφήσβητα περιβαλλοντικά πλεονεκτήματα, το CI αποτελεί ένα πολυσύνθετο τεχνολογικό σύστημα, που αποτελείται από πολυάριθμα στοιχεία όπως:

- Απαραίτητη ηλεκτρική υποδομή στα λιμάνια, όπως μηχανικά συστήματα τα οποία θα εφαρμόζουν σε όλους τους τύπους λιμανιών.
- Ηλεκτρική υποδομή στα πλοία, είτε μετεξοπλισμός είτε νεότευκτα.
- Σύνδεση και συστήματα ελέγχου για τη ασφάλεια του προσωπικού, αλλά και για την συνεχή ροή του ηλεκτρικού ρεύματος.
- Ένα ολοκληρωμένο σύστημα εν πλω, το οποίο θα περιλαμβάνει τον απαραίτητο εξοπλισμό και θα είναι κατασκευασμένο έτσι ώστε να μπορεί να πραγματοποιηθεί η σύνδεση του πλοίου με τον ρευματοδότη που βρίσκεται στην ξηρά δηλαδή στο λιμάνι.
- Εξοπλισμό με τον οποίο θα εξασφαλίζεται η αυτόματη ροή ηλεκτρικού ρεύματος στο πλοίο από τον ηλεκτροπαραγωγικό σταθμό και αντίστροφα (Safety4Sea, 2019).

Σχεδιασμός Συστήματος

Ο σχεδιασμός του συστήματος μπορεί να ταξινομηθεί στα παρακάτω τμήματα:

- Κύριος σταθμός: Η σύνδεση ξεκινάει με το δίκτυο του λιμένα σε έναν υπό-σταθμό ηλεκτρικής ενέργειας υψηλής τάσης, όπου γίνεται μείωση της τάσης μέσω ενός μετασχηματιστή. Συνήθως είναι απαραίτητη η μετατροπή αυτή να πραγματοποιηθεί στην ξηρά (shore-side), διότι τις περισσότερες φορές οι συχνότητες του πλοίου και του εξοπλισμού στην ξηρά διαφέρουν.
- Καλώδια Ρεύματος: Καλώδια υψηλής τάσης διανέμουν την ενέργεια στον παραλιακό υποσταθμό που βρίσκεται στον τερματικό σταθμό του λιμανιού.
- Παραλιακός υποσταθμός: Εδώ η τάση μειώνεται περαιτέρω.
• Αγκυροβόλιο: Τα καλώδια εγκαθίστανται υπογείως και συνδέονται με ένα καλωδιακό σύστημα κυλίνδρων για να αποφευχθεί ο χειρισμός υψηλών τάσεων. Ένα καπόνι χρησιμοποιείται για να ανυψώσει και να χαμηλώσει το καλώδιο (στο πλοίο).

• Εγκατάσταση επί του πλοίου: Το σύστημα διαχείρισης του καλωδίου χρησιμοποιείται για να συνδέσει το καλώδιο με μία πρίζα που βρίσκεται πάνω στο πλοίο. Η ισχύς τροφοδοτείται στην συνέχεια σε έναν τελικό μετασχηματιστή βηματισμού όπου η τάση μετατρέπεται στο επίπεδο που απαιτείται για το πλοίο (Innnes & Monios, 2018).

Εμπόδια Εγκατάστασης

Η άποψη που έχει επικρατήσει σχετικά με την χρήση του cold ironing είναι ότι, αποτελεί μια αποτελεσματική μέθοδο μείωσης εκπομπών αερίων.

Από την πλευρά των λιμένων, μια τέτοια επένδυση είναι ικανή να οδηγήσει σε μειωμένες εκπομπές στην λιμενική περιοχή και συνεπώς καλύτερης ποιότητας αέρα. Βέβαια για να επιτευχθεί κάτι τέτοιο, θα πρέπει να υπάρχουν επαρκή πλοία τα οποία θα προσεγγίζουν τα λιμάνια και θα είναι κατασκευασμένα με τέτοιο τρόπο ώστε να μπορούν να δεχτούν ηλεκτρική ενέργεια από τις εγκαταστάσεις του λιμανιού. Εάν δεν επιτευχθεί αυτό το σενάριο, τότε τα οφέλη από την εγκατάσταση του CI θα περιοριστούν με αποτέλεσμα να είναι ίσως προτιμότερη η χρήση ενναλακτικών πράσινων επενδύσεων, όπως για παράδειγμα η χρήση καθαρότερων καυσίμων(Clean Fuels). Από την άλλη πλευρά, ο μετεξοπλισμός των πλοίων θα έχει ως συνέπεια, την μείωση των λειτουργικού κόστους του πλοίου, καθώς θα χρησιμοποιεί ηλεκτρική ενέργεια αντί καυσίμων χαμηλής περιεκτικότητας σε θείο, τα οποία ενδέχεται να είναι ακριβά.

Βέβαια, υπάρχουν διάφορα βασικά εμπόδια για την εγκατάστασή του στα λιμάνια. Πιο συγκεκριμένα, το υψηλό ενεργειακό κόστος και κόστος υποδομής, η έλλειψη υιοθέτησης ιδίων προτύπων, τεχνολογίας και προδιαγραφών στα λιμάνια αλλά και η έλλειψη μιας Ευρωπαϊκής νομοθεσίας σχετικά με το θέμα αυτό. Αναφορικά με τα
πρότυπα για την υιοθέτηση της συγκεκριμένης πρακτικής, πλοία διαφορετικής χωρητικότητας και λειτουργίας, χρησιμοποιούν διαφορετικές τάσεις και συχνότητες οι οποίες διαφέρουν από τα ηλεκτρικά χαρακτηριστικά του δικτύου του λιμανιού καθιστώντας έτσι τα πλοία μη συμβατά με το ηλεκτρικό δίκτυο του λιμανιού.

Blockchain

Σε μια εποχή που χαρακτηρίζεται από την ραγδαία τεχνολογική επανάσταση, οι πρωτοποριακές ψηφιακές τεχνολογίες έρχονται όλο και περισσότερο στο προσκήνιο, με σκοπό να οχυρώσουν και να υποστηρίξουν τη λειτουργική διαχείριση των πλοίων και των λιμανιών.

Μια από τις σημαντικότερες τεχνολογίες που φαίνεται να προσφέρει νέες επιλογές και διεξόδους για τη ναυτιλιακή βιομηχανία είναι το blockchain. Πρόκειται για μια ψηφιακή καινοτομία, η εφαρμογή της οποίας βρίσκει γόνιμο έδαφος στον κλάδο της ναυτιλίας, καθώς όσο περνάει ο καιρός κερδίζει όλο και περισσότερο την εμπιστοσύνη της ναυτιλιακής κοινότητας γιατί απλοποιεί το πολύπλοκο δίκτυο των logistics. Ως αποτέλεσμα, διευκολύνεται η διαμετακόμιση των εμπορευμάτων τόσο σε στεριά όσο και σε θάλασσα (Iselos, 2019).

Τι είναι το Blockchain;

Όσον αφορά τον ορισμό του Blockchain, οι Nonetheless, Seebacher και Schöritz (2017) κατάφεραν να ορίσουν το blockchain συνοπτικά και περιεκτικά ως εξής: "Το blockchain είναι μια κατανεμημένη βάση δεδομένων, η οποία κοινοποιείται και συμφωνείται σε ένα δίκτυο peer-to-peer. Αποτελείται από μια συνδεδεμένη ακολουθία μπλοκ η οποία αποθηκεύεται συναλλαγές με χρονική σήμανση οι οποίες ασφαλίζονται μέσω κρυπτογράφησης και επαληθεύονται από την κοινότητα του δικτύου. Μόλις ένα στοιχείο προσαρτηθεί στο blockchain, δεν μπορεί να αλλάξει, μετατρέποντας ένα blockchain σε αμετάβλητο αρχείο προηγούμενης δραστηριότητας" (Schüritz & Seebacher, 2017).
Προκειμένου να είναι ασφαλές το blockchain και να διασφαλιστεί η ορθότητα αυτού που καταγράφεται, εκτελούνται διαδικασίες που περιλαμβάνουν τόσο την κρυπτογράφηση όσο και την επαλήθευση του χρήστη. Επιπλέον, όπως καθορίζεται από το πρωτόκολλο του συστήματος, ή τους κανόνες βάσει των οποίων σχεδιάστηκε το blockchain, μόλις επαληθευτεί ένας συγκεκριμένος αριθμός συναλλαγών, προστίθεται ένα νέο μπλοκ.

Μεταξύ άλλων σκοπών, ένα μπλοκ χρησιμοποιεί επίσης ως μονάδα αποθήκευσης επαληθευμένων συναλλαγών με αναφορά στην προηγουμένως διακανονισμένη και επαληθευμένη αλυσίδα μπλοκ. Επιπρόσθετα, προστίθενται νέα μπλοκ συναλλαγών με τρόπο «προσάρτημα μόνο», που σημαίνει ότι κανείς δεν μπορεί να αλλάξει ή να τροποποιήσει το σύνολο δεδομένων στο blockchain (Schüritz & Seebacher, 2017).

Ειδικότερα, όσοι περισσότεροι είναι οι χρήστες που συμμετέχουν στην πλατφόρμα, τόσο μεγαλύτερος είναι ο έλεγχος των δεδομένων και τόσο μεγαλύτερος είναι ο βαθμός εμπιστοσύνης και η ορθότητα των στοιχείων. Οι χρήστες, έχοντας εγκατεστημένο το κατάλληλο λογισμικό, ενημερώνουν ταυτόχρονα το μητρώο για τις αλλαγές που αυτό έχει υποστεί, με αποτέλεσμα να έχουν όλοι και ταυτόχρονα την ίδια κατάσταση του μητρώου, άρα την ίδια πληροφόρηση.

Επιπλέον, η ασφάλεια του δικτύου ενισχύεται μέσω της κατανομής των datablocks μέσα στο σύμπλεγμα υπολογιστών (peer-to-peer network) και όχι σε μια και μόνο κεντρική οντότητα (Isalos, 2019).

Πλεονεκτήματα

Υπάρχουν τρία κύρια πλεονεκτήματα του blockchain:

1) Είναι ανώνυμο και ελεύθερο να συμμετάσχει οποιοσδήποτε χρήστης.
2) Τα υποβληθέντα δεδομένα δεν μπορούν να τροποποιηθούν και πιο συγκεκριμένα, η εγγύηση ακεραιότητας των δεδομένων του δικτύου δεν παρέχεται από ένα συγκεκριμένο κεντρικό παίχτη, καθώς στην πραγματικότητα βασίζεται στην συναίνεση ολόκληρου του δικτύου.

51
3) Δεν είναι δυνατή η κατάργηση των δημοσιευμένων δεδομένων, πράγμα που σημαίνει ότι καμία αρχή δεν μπορεί να εφαρμόσει λογοκρισία σε ήδη δημοσιευμένα δεδομένα. Δεδομένου ότι το blockchain είναι αμετάβλητο, η αλλαγή των κρυφών μηνυμάτων είναι σχεδόν αδύνατη (Tijen, 2019).

The Maritime Logistics System

Όπως είναι ευρέως γνωστό, οι θαλάσσιες μεταφορές είναι ένα κεντρικό και ολοκληρωμένο στοιχείο του παγκόσμιου συστήματος εφοδιαστικής αλυσίδας (Song & Lee, 2012). Πράγματι, οι θαλάσσιες μεταφορές είναι υπεύθυνες για τη μεταφορά φορτίων από τον ωκεανό, με αποτέλεσμα να υφίσταται μια ευρέως διασκορπισμένη συγκοινωνιακή σύνδεση μεταξύ αποστολέων και παραληπτών.

Το σύστημα θαλάσσιων μεταφορών που εμπλέκεται σε βάθος με την εφοδιαστική αλυσίδα αναφέρεται ως «maritime logistics». Η ναυτιλιακή εφοδιαστική αλυσίδα, μπορεί να οριστεί ως «η διαδικασία σχεδιασμού, εφαρμογής και διαχείρισης της διακίνησης αγαθών και πληροφοριών που εμπλέκονται στις θαλάσσιες μεταφορές» (Panayides & Song, 2012).

Υπάρχουν τρεις κύριοι παίκτες στη ναυτιλιακή εφοδιαστική αλυσίδα: η ναυτιλιακή εταιρεία, ο λιμένας / ο διαχειριστής τερματικού και ο μεταφορέας.

Στο παρακάτω σχήμα εμφανίζεται η αλληλεπίδραση και οι δραστηριότητες μεταξύ του αποστολέα, του μεταφορέα και του διαχειριστή του τερματικού, καθώς και η δημιουργία αξίας του θαλάσσιου συστήματος εφοδιαστικής αλυσίδας. Αυτό το μοντέλο δημιουργήθηκε από τους (Lee & Song, 2010) και βασίζεται στο διάσημο μοντέλο της αλυσίδας αξίας του Porter (Porter 1985).
Παρατηρούμε ότι, το μοντέλο χωρίζεται σε πρωταρχικές και δευτερεύουσες δραστηριότητες. Οι πρωταρχικές δραστηριότητες αφορούν τις κύριες λειτουργίες των θαλάσσιων μεταφορών. Πιο συγκεκριμένα: οι ναυτιλιακές εταιρείες που μεταφέρουν τα εμπορεύματα, οι φορείς εκμετάλλευσης λιμένων και τερματικών σταθμών οι οποίοι φορτώνουν και εκφορτώνουν φορτία από πλοία και οι μεταφορείς που διευκολύνουν την αποστολή του φορτίου για λογαριασμό του αποστολέα.

Οι δευτερεύουσες δραστηριότητες υποστηρίζουν τις πρωταρχικές, διασφαλίζοντας ότι λειτουργούν πιο αποτελεσματικά. Επιπλέον, οι οργανωτικές ικανότητες των φορέων, συμπεριλαμβανομένης και της διαχείρισης των ανθρώπινων πόρων, του συστήματος πληροφοριών, των διοικητικών δεξιοτήτων και της οικονομικής υποστήριξης, διαδραματίζουν επίσης σημαντικό ρόλο στην ενίσχυση των πρωταρχικών δραστηριοτήτων.
Ως εκ τούτου, ένα προφανές συμπέρασμα είναι ότι, οι δραστηριότητες που εκτελούνται από αυτούς τους προαναφερόμενους ′′παίκτες′′ αλληλοσυνδέονται με τέτοιο τρόπο ώστε να αναφερόμαστε τελικά σε προμηθευτές ή αγοραστές προϊόντων και υπηρεσιών. Οι ναυτιλιακές εταιρίες είναι πελάτες του λιμανιού, ενώ οι μεταφορείς εμπορευμάτων, οι οποίοι παρέχουν υπηρεσίες για τους φορτωτές, είναι πελάτες των ναυτιλιακών εταιρειών.

Συμπεραίνουμε ακόμα, ότι η προστιθέμενη αξία τελικά, δημιουργείται μέσα στο ναυτιλιακό σύστημα εφοδιαστικής αλυσίδας όταν οι πελάτες θεωρούν τις υπηρεσίες που παρέχονται από τους προμηθευτές αρκετά ′′πολύτιμες′′ για να τις αγοράσουν (Lee & Song, 2010).

Εφαρμογές του Blockchain στον ναυτιλιακό κλάδο

Οι τεχνολογικές και τεχνικές εξελίξεις στον κλάδο της ναυτιλιακής βιομηχανίας, ανέκαθεν θεωρούνταν ένα προκλητικό ζήτημα λόγω της συντηρητικότητας που υφίσταται στον κλάδο. Ένα καλό παράδειγμα αυτής της κατάστασης δίνεται μέσω της εισαγωγής λύσεων τεχνολογίας πληροφοριών(IT) (π.χ. παρακολούθηση και ανίχνευση εμπορευμάτων, δεδομένα AIS, blockchain) που εξυπηρετούν ένα ευρύτερο πεδίο από το απλό σκέλος της αποστολής.

Ειδικότερα όσον αφορά κλάδο της ναυτιλίας, το σύστημα Blockchain επιτρέπει τη δημιουργία αρχείων με ασφαλή, αξιόπιστο και διαφανή τρόπο, με τον οποίο όλα τα διαφορετικά μέρη μπορούν να ελέγχουν τις πληροφορίες και κανείς δεν μπορεί να ακυρώσει οτιδήποτε έχει κοινοποιηθεί. Η δυνατότητα:

α) Βελτιστοποίησης των διοικητικών δραστηριοτήτων (δηλ. εγγράφων, συμβάσεων).

β) Παράκαμψης καθυστερήσεων που συνδέονται με τις ροές τεκμηρίωσης, μαζί με τη δυνατότητα εισαγωγής νέων υπηρεσιών προστιθέμενης αξίας που συνδέονται με την παροχή νέων δεδομένων (π.χ. πληροφορίες/λεπτομερείς φορτίου, τοποθέτηση φορτίου, έξυπνες συμβάσεις, έλεγχοι, εκτίμηση κινδύνου) έχουν κινήσει το ενδιαφέρον των διαφόρων ναυτιλιακών εταιρειών (Bavassano, Ferrari, & Tei, 2020).
Παράλληλα, η χρήση των εφαρμογών του blockchain θα ωφελήσει τις ναυτιλιακές
εταιρείες, τους λιμενικούς φορείς, τους μεταφορείς εμπορευμάτων, τα ναυτιλιακά
πρακτορεία και άλλους φορείς που απαρτίζουν την ναυτιλιακή εφοδιαστική
αλυσίδα, επειδή η χρήση ανατρεπτικών τεχνολογιών από αυτούς τους ‘’πάικτες’’
γρηγορότερα από ότι οι ανταγωνιστές, μπορούν να προσφέρουν στις εταιρείες
πλεονεκτήματα και υψηλότερο βαθμό ανταγωνιστικότητας (Yang, 2019).

Ψηφιοποίηση και ευκολία στην ανταλλαγή εγγράφων

Δεδομένου ότι η ναυτιλιακή βιομηχανία είναι παγκόσμια και επειδή εμπλέκεται με
το διασυνοριακό εμπόριο και τις μεταφορές, η διαδικασία περιλαμβάνει πολλές
γλώσσες και φορείς, καθιστώντας έτσι την διαδικασία ψηφιοποίησης και
tυποποίησης των εγγράφων δύσκολα προσαρμόσιμη και χρονοβόρα.
Ειδικότερα, στα έγγραφα αυτά συμπεριλαμβάνονται: φορτωτικές, παραγγελίες
eμπορευμάτων(Bill of Ladings) ,εμπορικά τιμολόγια, λίστες συσκευασίας,
επιβεβαιώσεις κράτησης, δηλώσεις επικίνδυνων εμπορευμάτων, πιστοποιητικά
προέλευσης, πιστοποιητικά επιθεώρησης, πιστοποιητικά ασφάλισης κ.λπ.
Επομένως είναι αρκετά δύσκολη και περίπλοκη η σωστή διαχείριση όλων αυτών
των εγγράφων. Σε αυτά τα προβλήματα το Blockchain έρχεται να δώσει άμεσες
λύσεις όπως θα δούμε στην συνέχεια του κεφαλαίου.

Παρακολούθηση και ανίχνευση (Tracking and tracing)

Οι τρέχουσες πρακτικές παρακολούθησης φορτίου μπορούν να ληφθούν μόνο
μέσω πληροφοριών συστήματος που παρέχεται στην αρχική σελίδα της εταιρείας
παροχής υπηρεσιών μεταφοράς.
Επομένως, αυτές οι πληροφορίες περιορίζονται όταν οι πληροφορίες φορτίου
εισέρχονται στο σύστημα επεξεργασίας του παρόχου υπηρεσιών μεταφοράς
(Foerstl, Schleper, & Henke, 2017).
Η τεχνολογία Blockchain παρακολουθεί ένα ευρύτερο φάσμα παγκόσμιων
συνεργατών εφοδιαστικής αλυσίδας, όπως φορτωτές, ναυτιλιακούς μεταφορείς,
ναυτιλιακές εταιρίες, διαχειριστές τερματικών και τελωνεία, καθιστώντας δυνατή την παρακολούθηση των εμπορευμάτων πολύ πιο διεξοδικά, ενώ ταυτόχρονα παρέχει πρόσβαση σε πληροφορίες σχετικά με τους χρόνους παράδοσης (Dobrovnik, Herold, Fürst, & Kummer, 2018). Αυτό καθιστά την εφοδιαστική αλυσίδα πιο αποτελεσματική και παραγωγική (Tapscott & Tapscott, 2016).

Αύξηση της ασφάλειας και της διαφάνειας των συναλλαγών μέσω του blockchain στην ναυτιλία

Το Blockchain μπορεί να εξασφαλίσει την ακεραιότητα οποιουδήποτε αρχείου, μειώνοντας τον κίνδυνο ζημιών σε εμπορεύματα ή ελλείψεων αποστολών. Αντικαθιστώντας το παλιό σύστημα χαρτιού, όλα τα εμπλεκόμενα μέρη έχουν πρόσβαση σε πληροφορίες, διευκολύνοντας τον αποτελεσματικό σχεδιασμό των λειτουργιών και εξοικονομώντας χρήματα (Yahoo Finance, 2019).

Το blockchain επομένως είναι ικανό να αλλάξει τον τρόπο λειτουργίας πολλών μερών της ναυτιλιακής βιομηχανίας. Παρακάτω αναλύονται πιο διεξοδικά μερικές από τις βασικές αλλαγές που επιφέρει το blockchain στην ναυτιλία.

Λιμάνια και τερματικοί σταθμοί: Τα λιμάνια αποκτούν ολοκληρωμένη και καλύτερα αρχειοθετημένη, real-time πληροφόρηση για την διάθεση των φορτίων, εντός των ορίων του λιμανιού (track and trace cargo), με αποτέλεσμα να υπάρχει καλύτερη οργάνωση και συντονισμός των λιμενικών εργασιών και να βελτιώνεται η διαχείριση των αποθεμάτων. Δηλαδή, παρέχεται πλήρης διαφάνεια από άκρο σε άκρο κατά μήκος όλων των θαλάσσιων διαδρόμων ενός λιμανιού (port corridors), αξιοποιώντας με αυτόν τον τρόπο πιο αποτελεσματικά τους πόρους του. Αυξάνεται κατά αυτό τον τρόπο η λειτουργικότητα/αποδοτικότητα του λιμανιού, μειώνονται οι επιθεωρήσεις και αποφεύγονται οι δυπλές διαδικασίες (double handling) (Isalos, 2019).
Τελωνειακές αρχές: Οι διαδικασίες εκτελωνισμού των εμπορευμάτων που εισάγονται και εξάγονται από μια χώρα ενισχύονται με περισσότερη διαφάνεια. Μέσω του blockchain, η αξιόπιστη και σε πραγματικούς χρόνους ανταλλαγή πληροφοριών(Exchange of Info-EOI) μεταξύ των τελωνειακών και αρμόδιων αρχών βοηθά στον εντοπισμό δόλων ενεργειών, όπως παραποίησεις συνοδευτικών εγγράφων των φορτίων(φορτωτικές, λιμενικά έγγραφα κ.λπ.), πωλήσεις εμπορευμάτων που δεν υπάρχουν, ψευδείς εγγυητικές επιστολές αποζημίωσης, κλπές φορτίων και παράνομες αντικαταστάσεις με χαμηλότερης ποιότητας φορτία.

Γραφειοκρατικές διαδικασίες: Ένα μόνιμο πρόβλημα που αντιμετωπίζει η ναυτιλιακή κοινότητα είναι αυτό της υψηλής γραφειοκρατίας. Το blockchain ίσταται για να αποτρέψει τα λάθη στα πολυάριθμα έγγραφα και τις διαδρομές μέσω του tracing, ενός συστήματος το οποίο επιτρέπει την άμεση και ανά πάσα στιγμή ιχνηλασιμότητα των κωλυμάτων, ενώ παράλληλα ελαχιστοποιεί τον κίνδυνο επιβολής κυρώσεων για την τήρηση των τελωνειακών κανόνων που επιβάλλονται στους πελάτες. Προσδίδει ταχύτητα, καθώς αφήνει εκτός της παραδοσιακή διαδικαστική γραφειοκρατία, ενώ βοηθάει να επαληθευτεί αν οι ενέργειες που έχουν εκτελεστεί συμπίπτουν με την γραφειοκρατική πορεία των συνοδευτικών εγγράφων των εμπορευμάτων (συμβάσεις πωλήσεων, συμφωνίες ναύλωσης, φορτωτικές, έγγραφα λιμένα, πιστωτικές επιστολές κ.λπ.).

Χαρακτηριστικό παράδειγμα αυτού είναι αυτό των Maersk και IBM. Η A.P.Moller-Maersk σε συνεργασία με την IBM δημιούργησαν την πλατφόρμα Tradelens, η οποία βασίζεται στην τεχνολογία του blockchain και επιταχύνει τις μεταβιβάσεις εγγράφων, αυξάνοντας τις αλληλεπιδράσεις των εμπλεκόμενων συμβατικών εμπλουτισμών, καθιστώντας πιο αποτελεσματικό το παγκόσμιο ναυτιλιακό εμπόριο (Isalos, 2019).

Μεσολαβητές: Από το στάδιο της ναύλωσης του πλοίου έως το στάδιο της παράδοσης του εμπορεύματος, πλήθος ενδιάμεσων προσώπων εμπλέκονται στα logistics και το supply chain, τα οποία καθιστούν δύσκολη την επικοινωνία μεταξύ των μερών, επιβραδύνουν τις διαδικασίες και προσθέτουν διαχειριστικά λάθη. Επιπλέον, λόγω του μεγάλου όγκου των συναλλαγών συχνά υπάρχει και
αδιαφάνεια. Η πλατφόρμα διατηρεί την ακεραιότητα του track record της επικοινωνίας, συναλλαγών, διαπραγματεύσεων κ.λπ., ενώ οι πληροφορίες δεν διαγράφονται και δεν επεξεργάζονται δίχως να αφήσουν ίχνη, γεγονός που προσδίδει διαφάνεια και ασφάλεια στο σύστημα.

Παράλληλα, προσφέρεται αμεσότητα στην επικοινωνία των ενδιαφερόμενων (stakeholders), περιορίζοντας τους μεσολαβητές, με ιδία πληροφόρηση και δίχως στρεβλώσεις. Επομένως, κερδίζεται αξιοπιστία στις συναλλαγές και χρόνος, ο οποίος στη βιομηχανία της διεθνούς ναυτιλίας μεταφράζεται σε χρήμα.

Απλοποίηση πληρωμών-Smart contracts: Στα πλαίσια της τεχνολογίας του blockchain, τα έξυπνα συμβόλαια (smart contracts) απλοποιούν το κομμάτι των πληρωμών οι οποίες εκτελούνται σχεδόν αυτόματα, δεδομένου ότι οι προκαθορισμένοι όροι των συμβολαιών έχουν εκπληρωθεί. Παράλληλα, λειτουργεί ως σύστημα ηλεκτρονικών καταγραφών που επιτρέπει συγχρόνως την αυτόνομη επαλήθευση των συναλλαγών.

Για παράδειγμα, οι ηλεκτρονικές φορτωτικές επιτρέπουν στους ενδιαφερόμενους (stakeholders) να έχουν υπό πλήρη επίβλεψη τη πορεία του εμπορεύματος από την παραλαβή έως την παράδοση, μειώνοντας τα διαδικαστικά έξοδα. Ταυτόχρονα, ολοένα και περισσότερες τράπεζες που δραστηριοποιούνται στο cash management των ναυτιλιακών εταιρειών, καλούν μειωμένες διακρίσεις και ενσωματώνονται το blockchain στην εταιρεία, επενδύοντας σημαντικά ποσά στην ανάπτυξη νέων τεχνολογιών εκμεταλλευόμενοι τα blockchains (p.χ. αναπτύσσοντας API’s6 integrating με τα μηχανογραφικά τους συστήματα και ενσωματώνοντας τις εσωτερικές ελεγκτικές διαδικασίες κάθε εταιρείας).

Είναι εμφανές πως σε ένα διαρκώς μεταβαλλόμενο επιχειρηματικό περιβάλλον, όπως η ποντοπόρος ναυτιλία, όπου η ανάγκη ενσωμάτωσης ευέλικτων, γρήγορων και αξιόπιστων διαδικασιών είναι διαρκώς αυξανόμενη και ανάλογη της τεχνολογικής εξέλιξης, τα blockchains έρχονται να προσφέρουν νέες

6 Application programming interface
αναβαθμισμένες δυνατότητες, στην καθημερινή λειτουργική διαχείριση πλοίων και λιμανιών. Μένει να αποδειχθεί σε τι βαθμό θα εφαρμοστεί η συγκεκριμένη τεχνολογία (Isalos, 2019).

Η περίπτωση των MAERSK-IBM

Ως εκ τούτου, η Maersk μία από τις μεγαλύτερες εταιρείες containership παγκοσμίως εργάζεται σκληρά για την ψηφιοποίηση του αποθέματος φορτίου των πλοίων μέσω της χρήσης του blockchain. Δεδομένου ότι το αρχείο είναι αμετάβλητο, ακόμη και ο ιδιοκτήτης ή η ίδια η αρχή έκδοσης δεν μπορεί να αλλάξει τη δημιουργημένη εγγραφή για να αποκτήσει οποιοδήποτε προσωπικό άλλο Γ. Για αυτό το λόγο, η τρέχουσα ικανότητα φόρτωσης και εκφόρτωσης των container μπορεί να διαρκέσει λίγα λεπτά, λόγω καθυστερήσεων που προκαλούνται από την γραφειοκρατία, αυτά τα εμπορευματοκιβώτια ενδέχεται να καθυστερήσουν για πολλές ημέρες σε λιμάνια (Groenfeldt, 2017), τα οποία έχουν ως αποτέλεσμα να εμποδίζουν την ροή της ναυτιλιακής εφοδιαστικής αλυσίδας και τις υπηρεσίες logistics.

Πιο συγκεκριμένα όσον αφορά το παραπάνω πρόβλημα, η Maersk και η IBM7 ισχυρίζονται ότι η λύση τους μπορεί να ψηφιοποιήσει τις διεργασίες αλυσίδας εφοδιασμού από την αρχή μέχρι το τέλος της αλυσίδας και ταυτόχρονα να βοηθήσει «να διαχειριστούν και να παρακολουθήσουν τα απαιτήσεις στις εγγραφαίος δεκάδων εκατομμυρίων εμπορευματοκιβωτίων σε όλο τον κόσμο» (IBM, 2017). Οι Maersk και IBM ισχυρίζονται ότι αυτός ο νέος βαθμός διαφάνειας στις λειτουργίες που θα προσφέρει το Blockchain, θα επιταχύνει τις επιχειρηματικές διαδικασίες του κλάδου και θα βελτιώσει τη διαχείριση αποθεμάτων, μειώνοντας περαιτέρω τις απάτες, το κόστος και τις καθυστερήσεις (IBM, 2017). Επιπλέον, το blockchain πιστεύεται, ότι μειώνει τους κινδύνους ασφάλειας στον κυβερνοχώρο, καθώς όπως προαναφέρθηκε είναι εξαιρετικά ανθεκτικό στην ηλεκτρονική παρείσφρηση (hacking).

7 International Business Machines Corporation
Τέλος, μια από τις φιλοδοξίες των IBM-Maersk είναι η μεγαλύτερη ένταξη των αναπτυσσόμενων χωρών στο παγκόσμιο εμπόριο. Αυτό συμβαίνει, επειδή η συγκεκριμένη λύση θα μπορεί δυναμικά να μειώσει σε σημαντικό βαθμό το κόστος μεταφοράς, το οποίο ήδη ισχυρίζεται η Παγκόσμια Τράπεζα ότι είναι ένας πιο δεσμευτικός περιορισμός στο εμπόριο από τους δασμούς ή άλλους εμπορικούς φραγμούς (IBM, 2017).

Συμπέρασμα

Σχετικά με το Cold Ironing, η συγκεκριμένη τεχνολογία έχει δείξει αυξημένο ενδιαφέρον τα τελευταία χρόνια μετά την καθιέρωση συνεχών περιβαλλοντικών πολιτικών που επιδιώκουν την μείωση των εκπομπών από τις θαλάσσιες μεταφορές. Αποτελεί μια έξυπνη λύση, καθώς είναι προφανές ότι όταν υπάρχουν υψηλές τιμές καυσίμου, το κόστος της ηλεκτρικής ενέργειας από το δίκτυο τείνει να είναι σημαντικά χαμηλότερο, και ως εκ τούτου παρέχει χαμηλότερο λειτουργικό κόστος όταν βασίζεται σε CI. Επομένως, η ρύθμιση χαμηλής περιεκτικότητας στο θείο κοντά σε λιμάνια μπορεί να παρέχει επιπλέον κίνητρα στους πλοιοκτήτες για να επενδύσουν σε CI.

Από περιβαλλοντικής άποψης, ένα πλοίο που χρησιμοποιεί CI είναι πιο φιλικό προς το περιβάλλον από ένα πλοίο που έχει scrubber ή χρησιμοποιεί MGO\(^8\) στο αγκυροβόλιο. Ωστόσο, το σημαντικότερο εμπόδιο στην περαιτέρω εφαρμογή αυτής της ενέργειας στην ναυτιλία, είναι τα υψηλά κεφάλαια που απαιτούνται, η έλλειψη επαρκών λιμένων που διαθέτουν αυτήν την τεχνολογία καθώς και ο μικρός αριθμός εμπορικών πλοίων που αυτήν την στιγμή μπορούν να υποστηρίξουν αυτήν την πρακτική.

\(^{8}\) Marine Gas Oil
Αξίζει να σημειωθεί όμως ότι, με την πάροδο του χρόνου, τα νεότερα πλοία μπορεί να ετοιμαστούν με δυνατότητα χρήσης CI και οι λιμενικές αρχές ενδέχεται να αρχίσουν να επενδύουν περαιτέρω λόγω κανονισμών (όπως στην Ευρωπαϊκή Ένωση από το 2025) στην αναβάθμιση των λιμένων με τεχνολογία CI. Μια διαφορετική προσέγγιση, έτσι ώστε να υποστηριχτεί περεταίρω η χρήση της συγκεκριμένης τεχνολογίας, μπορεί να έρθει μέσω νέων περιβαλλοντικών κανονισμών που μπορούν, είτε να στοχεύουν στην μείωση των τοπικών ρύπων (όπως εκπομπές PM, NOx ή Black Carbon), είτε στην αύξηση της τιμής των καυσίμων λόγω πιθανής φορολογικής εισφοράς.

Όσον αφορά την τεχνολογία του blockchain συμπεραίνουμε, ότι είναι μία καινοτομία που ουσιαστικά απαιτεί επενδύσεις χαμηλού κεφαλαίου για τον συμμετέχοντα - σε έναν κλάδο όπου υφίσταται υψηλού ένταση κεφαλαίου – και θεωρείται ως ένα ανταγωνιστικό πλεονέκτημα όσον αφορά την λύση του blockchain σε σύγκριση με άλλες τεχνολογίες.

Η τεχνολογία του blockchain είναι μια λύση που μπορεί να δημιουργήσει τεράστιο αντίκτυπο στην ναυτιλιακή βιομηχανία, μειώνοντας την ανάγκη για διαμεσολάβηση χάρη στις νέες αξιόπιστες πλατφόρμες ανταλλαγής πληροφοριών. Τα θεωρητικά πλεονεκτήματα θα μπορούσαν να είναι άνευ προηγουμένου για μια λύση πληροφορικής (π.χ. 25% μείωση κόστους, 40% μείωση χρόνου παράδοσης).

Παρ’ όλα αυτά, τα περισσότερα από τα δηλωθέντα πλεονεκτήματα του Blockchain δεν έχουν παρουσιαστεί επί του παρόντος σε πλήρη κλίμακα και αυτό δικαιολογείται από το επίπεδο ετοιμότητας της αγοράς. Παράλληλα, η ρύθμιση και το κανονιστικό πλαίσιο μιας τέτοιας τεχνολογίας είναι υψηλής σημασίας, δεδομένου ότι η ασφάλεια στον κυβερνοχώρο και οι δράσεις που αφορούν στην εξάλειψη του κινδύνου θεωρούνται δύο από τα κύρια συστατικά για την ασφαλή λειτουργία του blockchain.

Τέλος, τα δυο προαναφερθέντα πλεονεκτήματα, βασίζονται στην αποτελεσματική ενσωμάτωση του blockchain στα διάφορα νομικά πλαίσια (π.χ. έξυπνη νομοθεσία...
περί συμβάσεων). Ομοίως, τα κέρδη από την υιοθέτηση αυτής της τεχνολογίας συνδέονται συχνά με ελέγχους στα σύνορα, υπονοώντας ότι οι τοπικοί παράγοντες έχουν στην πραγματικότητα μεγάλο ρόλο στην υλοποίηση του blockchain.

Big Data

Τι εννοούμε με τον όρο Big Data

Ο όρος Big Data χρησιμοποιείται για να περιγράψει τον μεγάλο όγκο και τα πολύπλοκα σύνολα δεδομένων που είναι δύσκολο να επεξεργαστούν και να αναλυθούν χρησιμοποιώντας παραδοσιακές τεχνικές και εφαρμογές επεξεργασίας δεδομένων (Zaman, Pazouki, Norman, Younessi, & Coleman, 2017). Αναφέρεται ακόμα, στην συλλογή και στην μετέπειτα ανάλυση οποιασδήποτε σημαντικής μεγάλης συλλογής μη δομημένων δεδομένων που ενδέχεται να περιέχουν χρήσιμες πληροφορίες.

Χαρακτηριστικά των Big Data

Τα Big Data καλύπτουν πληροφορίες από διάφορες πηγές, όπως για παράδειγμα αισθητήρες και κάμερες. Υπάρχουν πολλές δυσκολίες που σχετίζονται με την καταγραφή, ταξινόμηση, ανάλυση και διαχείριση δεδομένων.

Αναφορικά με τα χαρακτηριστικά, τα Big Data έχουν τέσσερα κύρια χαρακτηριστικά και αναφέρονται ως 4Vs: Όγκος (Volume), Ποικιλία (Variety), Ταχύτητα (Velocity) και Εγκυρότητα/Βεβαιότητα (Veracity) (Zaman, Pazouki, Norman, Younessi, & Coleman, 2017).

- Ο όγκος αναφέρεται στη μαζική ποσότητα των δεδομένων. Σήμερα, οι αισθητήρες παράγουν τεράστια ποσότητα δεδομένων σε terabyte, petabytes και πέραν αυτών.

- Η ποικιλία αναφέρεται στη μορφή των δεδομένων. Στα Big Data το σύνολο των δεδομένων αποδηκτεύεται σε πολλές μορφές. Η παραλλαγή δεδομένων διαφοροποιεί τα Big Data από τα ‘’παραδοσιακά’’ δεδομένα.
Η ταχύτητα αναφέρεται, στην ταχύτητα δημιουργίας και κίνησης των δεδομένων. Τα δεδομένα δημιουργούνται με διαφορετικούς ρυθμούς και πρέπει να αποθηκευτούν πρώτα για να υποστούν επεξεργασία. Γενικά, δημιουργείται τεράστιος όγκος δεδομένων σε πραγματικό χρόνο και οι ρυθμοί ροής δεδομένων αυξάνονται με την ίδια ταχύτητα.

Η εγκυρότητα αναφέρεται στην ακρίβεια και την αξιοπιστία των δεδομένων. Τα σύνολα δεδομένων από διαφορετικές πηγές ενδέχεται να χρησιμοποιούν διαφορετικές κλίμακες για τη μέτρηση της ίδιας μεταβλητής και αυτό εγείρει ζητήματα σχετικά με τον τρόπο διατήρησης της ποιότητας των δεδομένων. Η ευλογία πρέπει να αντιμετωπιστεί και να διατηρηθεί καθ’ όλη τη διάρκεια του κύκλου ζωής των δεδομένων.

Σχήμα 1: Τα 4Vs των Big Data
Πηγή: (Zaman, Pazouki, Norman, Younessi, & Coleman, 2017)
Υιοθέτηση των Big Data στην ναυτιλιακή βιομηχανία

Υπάρχει μια σημαντική ποσότητα δεδομένων που παράγονται σε συστήματα πλοήγησης, οι οποίοι αποτελούνται από ραντάρ, ηλεκτρονικούς χάρτες και συστήματα πληροφοριών (ECDIS9), συστήματα αυτόματου πιλότου και άλλους συναφείς αισθητήρες (Obredovic & Milicevic, 2018).

Σύμφωνα με μια έκθεση της Ericsson, η ναυτιλιακή βιομηχανία υστερεί σε σχέση με άλλες βιομηχανίες τεχνολογίας πληροφοριών και επικοινωνιών. Μόνο λίγες ναυτιλιακές εταιρείες αξιοποιούν επί του παρόντος τα Big Data. Υπάρχουν πολλά οφέλη που μπορεί να αποκομίσει ο κλάδος μέσω της αξιοποίησής τους. Η βιομηχανία παράγει περίπου 100-120 εκατομμύρια σημεία δεδομένων κάθε μέρα, από διαφορετικές πηγές όπως λιμάνια και κινήσεις πλοίων. Οι εταιρείες μπορούν να αναλύσουν αυτά τα σημεία δεδομένων για να προσδιορίσουν την αποτελεσματικότητα, όπως ταχύτερες διαδρομές ή προτεινόμενα λιμάνια. Ένα τέτοιο εγχείρημα μπορεί εν δυνάμει να αποφέρει αύξηση της απόδοσης από 5 έως 10% (Trelleborg Marine Systems & Port Technology).

Χρήση των Big Data σε λιμάνια και τερματικούς

Λιμάνια σε όλο τον κόσμο συνεργάζονται με εταιρείες τεχνολογίας για την βελτίωση της αποτελεσματικότητας των λιμένων τόσο σε χρόνο όσο και σε χρήμα έτσι ώστε να ικανοποιήσουν τους πελάτες τους. Αυτές οι τεχνολογίες παράγουν μεγάλες ποσότητες δεδομένων, οι οποίες διατίθενται σε πολλές μορφές και πρέπει να κοινοποιούνται σε πολλούς διαφορετικούς ενδιαφερόμενους λιμένες.

Βελτιστοποίηση χρήσης (Optimising usage):

Η υιοθέτηση των Big Data στις λειτουργίες των λιμανιών έχει ως άμεσο αποτέλεσμα την βελτιστοποίηση της χρήσης πόρων και υποδομών.

9 Electronic Chart Display and Information Systems
Για παράδειγμα, ένας τυπικός χειριστής γερανού λειτουργεί μόνο το ένα τέταρτο του χρόνου, παραμένοντας σε αδράνεια για τα τρία τέταρτα του χρόνου, περιμένοντας να ετοιμάσει ένα εμπορευματοκιβώτιο έτοιμο για φόρτωση ή ένα άδειο φορτηγό το οποίο θα ξεφορτώσει ένα εμπορευματοκιβώτιο. Η αύξηση του αριθμού των φορτηγών μπορεί να μην είναι βιώσιμη λύση λόγω της συμφόρησης που θα προκαλούσε. Αντιθέτα, η μεγάλη ανάλυση δεδομένων θα μπορούσε να συγχρονίσει κινήσεις, έτσι ώστε ο χειριστής του γερανού να λειτουργεί περισσότερο χρόνο. Για παράδειγμα, σήματα που σχετίζονται με τη θέση του γερανού, την κατάσταση και τα σήματα θέσης GPS θα μπορούσαν να συγχρονίσουν την κίνηση των φορτηγών και των εμπορευματοκιβωτίων, για να μειώσουν τον χρόνο αδράνειας.

Επίσης, οι γερανοί παρουσιάζουν διαφορετικά επίπεδα απόδοσης ανάλογα με διάφορους παράγοντες, όπως η ικανότητα του οδηγού, ο φόρτος εργασίας, ο καιρός, ο τύπος του κοντέινερ και κατά πόσο επικρατεί συμφόρηση στην γιάρδα. Η κατανόηση τέτοιων προτύπων καθιστά δυνατή είτε την εξεύρεση λύσεων για να ξεπεραστούν αυτά τα εμπόδια, είτε τον συγχρονισμό των λειτουργιών για τον καθορισμό τέτοιων περιορισμών, ενισχύοντας τελικά την παραγωγικότητα.

Προληπτική συντήρηση γερανών και άλλων μηχανημάτων

Η συλλογή δεδομένων λειτουργίας από αισθητήρες τοποθετημένους μέσα σε μηχανήματα καθιστά δυνατή την πρόβλεψη για το πότε ένα μέρος του εξοπλισμού μπορεί να χαλάσει, ανοίγοντας έτσι τον δρόμο για ένα πιο αποτελεσματικό πρόγραμμα συντήρησης σε αντίθεση με την τήρηση του προγράμματος συντήρησης που συνιστά ο κατασκευαστής. Μια τέτοια προσέγγιση, επιτρέπει την έγκαιρη αντικατάσταση, προλαμβάνοντας τις καταστροφικές επιπτώσεις, συμπεριλαμβανομένων των "ηπιότερων" επιπτώσεων από την διακοπή των λειτουργιών λόγω ελλαττωμάτων ανταλλακτικών και έχουν ως αποτέλεσμα σημαντικό άμεσο και έμμεσο αντίκτυπο στο λειτουργικό κόστος.
Ακριβείς προβλέψεις:

Η ανάλυση των Big Data, ξεκλειδώνει δεδομένα που μέχρι στιγμής δεν ήταν ορατά και ενοποιεί πληροφορίες από διάφορες πηγές, συμπεριλαμβανομένων πλοίων, μηχανημάτων και λογισμικού λειτουργίας τερματικών (TOS10). Το ξεκλείδωμα των σχετικών επιχειρησιακών προτύπων δημιουργεί δυνατότητα δράσης, επιτρέποντας στους υπεύθυνους λήψης αποφάσεων όχι μόνο να βελτιστοποιούν τις λειτουργίες, αλλά και να προβλέπουν γεγονότα.

Επιπρόσθετα, τα δεδομένα που λαμβάνονται από τους αισθητήρες, οι οποίοι είναι τοποθετημένοι στον εξοπλισμό του λιμανιού, είναι σε θέση να βοηθήσουν τους χειριστές λιμένων να σχεδιάσουν ένα προγνωστικό μοντέλο για κάθε τύπο μηχανήματος έτσι ώστε να μεγιστοποιήσουν την αποδοτικότητα του λιμενικού εξοπλισμού, οδηγώντας σε εξοικονόμηση κόστους.

Οι αισθητήρες και οι κάμερες παρακολούθησης, θα μπορούσαν ακόμα να εντοπίσουν μοτίβα στοιβαζής εμπορευματοκιβωτίων. Επίσης, τέτοιες πληροφορίες θα ήταν χρήσιμο να χρησιμοποιηθούν, για την προσομοίωση μελλοντικών λειτουργιών του τερματικού και προβλέψεων απόδοσης, επιτρέποντας βελτιστοποιημένα σχέδια για τον χώρο και τον εξοπλισμό του τερματικού και καθιστώντας δυνατή την ακριβή πρόβλεψη του αριθμού των γερανών, τα απαιτούμενα φορτηγά και άλλους εξοπλισμούς χειρισμού εμπορευματοκιβωτίων (Naseer, 2015).

Internet of things

Το Internet of Things (IoT) μαζί με άλλες τεχνολογίες όπως το Big Data και η Τεχνίτη Νοημοσύνη (AI) αποτελούν τις τάσεις της εποχής και τα πιο πολυσυζητημένα θέματα στον ναυτιλιακό κλάδο.

Ωστόσο, υπάρχει μεγάλη ασάφεια ως προς το τι σημαίνει αυτό καθώς και σκέπτικη σχετικά με την πραγματική αξία που δημιουργείται μέσω του IoT.

10 *Terminal Operating System*
Το Internet of Things (IoT), όπως ορίζεται από το IEEE, είναι ένα δίκτυο αντικειμένων, συμπεριλαμβανομένων αισθητήρων και ενσωματωμένων συστημάτων που είναι συνδεδεμένα στο Διαδίκτυο και επιτρέπουν στα φυσικά αντικείμενα να συλλέγουν και να ανταλλάσουν δεδομένα. Καθώς η χρήση του IoT αυξάνεται, οι αισθητήρες παίζουν καθοριστικό ρόλο στη μέτρηση των φυσικών χαρακτηριστικών των αντικειμένων και την μετατροπή τους σε αριθμητικές τιμές, τις οποίες μπορεί να διαβάσει μια άλλη συσκευή ή ο χρήστης (Yu & Fu, 2018).

Οι συσκευές IoT έχουν γίνει διάχυτες και καλύπτουν ένα ευρύ φάσμα τεχνολογιών και προτύπων. Η ασύρματη τεχνολογία είναι το κλειδί για τη σύνδεση αυτών των συσκευών μέσω πυλών ή σημείων συγκέντρωσης ενώ παράλληλα ένα ευρύ φάσμα ασύρματων πρωτοκόλλων και προτύπων είναι διαθέσιμο και ανταγωνιστικό. Ένα περιβάλλον, το οποίο αποτελείται από μια πληθώρα συσκευών IoT που είναι συνδεδεμένες σε μια πλατφόρμα, χαρακτηρίζεται ως ψηφιοποιημένη και συχνά εξίσου έξυπνη (Ozturk, Jaber, & Imran, 2018).

Internet of Things στα Έξυπνα Λιμάνια-Πρότυπα επικοινωνίας για τα Έξυπνα Λιμάνια

Στα αυτοματοποιημένα λιμάνια, η τάση για «ασύρματη σύνδεση» είναι όλο και πιο εμφανής λόγω του πλεονεκτήματος της ευέλικτης ανάπτυξης. Ωστόσο, εξακολουθούν να υπάρχουν ορισμένα προβλήματα κατά την εφαρμογή της ασύρματης σύνδεσης. Το πιο εμφανές είναι ότι αυτές οι ασύρματες συσκευές είναι επιρρεπείς στο να επηρεαστούν από μεγάλα μεταλλικά μέρη και ηλεκτρικές συσκευές υψηλής ισχύος. Για να αντιμετωπιστεί αυτό το ζήτημα, αναπτύσσονται τεχνολογίες κεραίας κατά της παρεμβολής, οι οποίες έχουν την δυνατότητα να ρυθμίζουν αυτόματα ανάλογα με την κατάσταση των υφιστάμενων παρεμβολών. Με την ανάπτυξη τεχνολογιών αντί-μπλοκαρίσματος, η εφαρμογή της ασύρματης επικοινωνίας θα γίνει ολοένα και πιο ευρύτερη (Yu & Fu, 2018).
Βασικές Εφαρμογές των Internet of Things στην ανάπτυξη Έξυπνων Λιμανιών

Απαιτούνται πολλές βασικές τεχνολογίες και προϊόντα του IoT για την κατασκευή των Έξυπνων Λιμανιών (Intelligent Ports), των οποίων οι απαιτήσεις απόδοσης όπως η υψηλή ασφάλεια, η υψηλή αξιοπιστία, το υψηλό ποσοστό αναγνώρισης και η υψηλή σταθερότητα παρουσιάζονται.

1. Αισθητήρας (Sensor)

Ο αισθητήρας είναι ένα είδος συσκευής ανίχνευσης, το οποίο είναι σε θέση να καταλάβει τις πληροφορίες που πρέπει να μετρηθούν και να τις μετατρέψει σε ηλεκτρικό σήμα ή άλλη μορφή σύμφωνα με ορισμένους κανόνες, προκειμένου να εκκινήσει τις απαιτήσεις μετάδοσης, επεξεργασίας, αποθήκευσης, απεικόνισης, εγγραφής και ελέγχου πληροφοριών. Είναι ο κύριος σύνδεσμος για να επιτευχθεί η αυτόματη ανίχνευση και ο αυτόματος έλεγχος. Μπορεί να ανιχνεύσει, να αισθανθεί το εξωτερικό σήμα, τις φυσικές συνθήκες (όπως φως, θερμότητα, υγρασία, πίεση) ή χημική σύνθεση (π.χ. καπνός), και να τα μεταδώσει στο ανώτερο στρώμα του IoT από τις τεχνολογίες επικοινωνίας πληροφοριών (Xisong & Gang, 2013).

2. Ταυτοποίηση μέσω ραδιοσυχνοτήτων (RFID)

Η τεχνολογία RFID11 (ετικέτα RFID και αναγνώστης), είναι ένα είδος αυτόματης αναγνώρισης χωρίς επαφή και αποτελεί μία τεχνολογία ασύρματων επικοινωνιών μικρής εμβέλειας, που μπορεί αυτόματα να αναγνωρίσει αντικείμενα και να αποκτήσει πρόσβαση σε σχετικά δεδομένα μέσω σήματος RF. Είναι μία παθητική, χαμηλού κόστους, νέα τεχνολογία, η οποία αλλάζει σημαντικά την λειτουργία της εφοδιαστικής αλυσίδας ακολουθώντας την τεχνολογία του γραμμικού κώδικα (Xisong & Gang, 2013).

Διαθέτει επίσης πολλά χαρακτηριστικά, όπως απόσταση ανάγνωσης, ικανότητα διείσδυσης χωρίς φθορά, χωρίς επαφή, υψηλή απόδοση, μεγάλο όγκο

11 Radio Frequency Identification
πληροφοριών, αυτοματοποίηση και μεγάλη εμβέλεια, τα οποία δεν βρίσκονται στον γραμμικό κώδικα.

Οι ετικέτες RFID αποθηκεύουν κανονιστικές πληροφορίες που μπορούν να συλλεχθούν αυτόματα μέσω ενός ασύρματου δικτύου επικοινωνίας δεδομένων σε ένα κεντρικό σύστημα πληροφοριών, για να επιτευχθεί με αυτόν τον τρόπο η ταυτοποίηση των εμπορευμάτων, και στη συνέχεια ανταλλαγή πληροφοριών και κοινή χρήση μέσω ενός ανοιχτού δικτύου υπολογιστών.

3. Wireless Sensor Network (WSN)

Το WSN, τα ενσωματωμένα συστήματα, η δικτύωση, οι ασύρματες επικοινωνίες και η τεχνολογία επεξεργασίας κατανεμημένων πληροφοριών κ.λπ., μπορούν να συνεργάστουν σε πραγματικό χρόνο, να αντιληφθοῦν και να αποκτήσουν τις πληροφορίες του περιβάλλοντος και να παρακολουθήσουν αντικείμενα μέσω μιας ποικιλίας ενσωματωμένων μικρο-αισθητήρων και να επεξεργαστούν πληροφορίες μέσω του ενσωματωμένου συστήματος. Στην συνέχεια, μεταδίδουν πληροφορίες στο τερματικό χρήστη με τυχαία αυτό-οργάνωση ασύρματου δικτύου επικοινωνίας, προκειμένου να πραγματοποιηθεί η λεγόμενη πανταχού παρούσα υπολογιστική (ubiquitous computing) (Xisong & Gang, 2013).

Η ενοποίηση των βασικών τεχνολογιών και του γενικού πλαισίου των έξυπνων λιμένων

Πρώτον, το ενοποιημένο σύστημα τυποποίησης δεδομένων και το σύστημα ανταλλαγής δεδομένων είναι κατασκευασμένα για να υποστηρίζουν την ανάλυση δεδομένων. Στη συνέχεια, λαμβάνοντας την τεχνολογία IoT ως την βασική υποδομή και χρησιμοποιώντας τεχνολογίες όπως RFID, αισθητήρες, WSN 12, ασύρματες επικοινωνίες, υπολογιστικό νέφος (cloud computing), τρισδιάστατη εικονική πραγματικότητα (3D), μπορεί να επιτευχθεί η γρήγορη αυτόματη επίβλεψη, απόκτηση και παρακολούθηση εμπορευματοκιβωτίων, υπολογιστών, αντικειμένων, και

12 Wireless sensor network
εμπορευμάτων. Τέλος με τον τρόπο αυτό, πραγματοποιείται η έξυπνη διαχείριση της ροής της κυκλοφορίας εντός του τερματικού, της εφοδιαστικής αλυσίδας και της ροής πληροφοριών.

Α. Έξυπνο σύστημα διαχείρισης προγραμματισμού παραγωγής (Intelligent production scheduling management system)

Συγκεκριμένα, ολόκληρη η περιοχή του τερματικού καλύπτεται από ένα ασύρματο δίκτυο ή ασύρματους σταθμούς βάσης, όπως για παράδειγμα: ασύρματα τερματικά οχημάτων, τα οποία έχουν λειτουργία επικοινωνίας GPS σε πραγματικό χρόνο, και τα οποία είναι εγκατεστημένα σε αυτοκίνητα, περονοφόρα ανυψωτικά οχήματα, γερανούς και άλλα οχήματα.

Το προσωπικό ελέγχου στέλνει οδηγίες λειτουργίας σε πραγματικό χρόνο στα οχήματα που βρίσκονται στην γιάρδα και αποδέχεται την ανάδραση της ολοκλήρωσης των οδηγιών την ίδια στιγμή.

Επιπλέον, τα τρισδιάστατα μοντέλα αποθήκευσης εμπορευματοκιβωτίων γιάρδας έχουν την δυνατότητα να ενημερωθούν σε πραγματικό χρόνο για να επιτύχουν και να προβάλλουν στον χρήστη την ίδια εικόνα στο σύστημα του κέντρου ελέγχου που επικρατεί στον τερματικό (Xisong & Gang, 2013).

B. Έξυπνο σύστημα bayonet

Χρησιμοποιώντας RFID, φωτοηλεκτρικούς αισθητήρες (αναγνώριση αριθμού εμπορευματοκιβωτίων), αισθητήρες πίεσης (ηλεκτρονικό φορτίο), μαγνητικούς αισθητήρες (γράφημα επαγωγικής θέσης), GPS και πολλά άλλα εξαρτήματα δικτύου βασικών αισθητήρων, μπορεί να δημιουργηθεί το τοπικό IoT. Σκοπός το συστήματος είναι να συλλέγει αυτόματα μία πληθώρα πληροφοριών που αφορούν τον αριθμό των εμπορευματοκιβωτίων, του προσωπικού και των οχημάτων που λειτουργούν στην γιάρδα.
Μελλοντικές Προοπτικές

Τα έξυπνα λιμάνια, που βασίζονται σε τεχνολογία IoT, μπορούν να επιτύχουν ανταλλαγή πληροφοριών και δυναμική συνεργασία μεταξύ διαφορετικών πραγμάτων, για τη βελτίωση της αποτελεσματικότητας, της ακρίβειας, της οπτικοποίησης, της ασφάλειας και της προστασίας των λιμενικών λειτουργιών.

Επί του παρόντος, η τεχνολογία του IoT έχει εφαρμοστεί σε ορισμένου τερματικούς σταθμούς εμπορευματοκιβωτίων και θα μπορούσε να αναφερθεί ότι έχει σημειώσει σημαντική πρόοδο. Πρέπει να τονισθεί τέλος ότι, στο μέλλον, η τεχνολογία IoT θα διεισδύσει στην ανάπτυξη και στην κατασκευή των Έξυπνων Λιμανιών (Intelligent Ports), δημιουργώντας έτσι προστιθέμενη αξία για το λιμάνι.

Συμπέρασμα

Βάσει των παραπάνω, είναι προφανές ότι τα Big Data μοιάζουν με οποιαδήποτε άλλα δεδομένα στο cloud storage, που ποικίλλουν σε όγκο και περιεχόμενο. Με την αποτελεσματική προστασία των διαθέσιμων δεδομένων και την αποφυγή παραβιάσεων στον κυβερνοχώρο, τα Big Data είναι αρκετά ασφαλή έτσι ώστε τα δεδομένα να μπορούν να συλλέχθονται, να αναλυθούν και στο τέλος να χρησιμοποιηθούν. Η εξασφάλιση αυτών των δεδομένων, επομένως, καθίσταται υψηλής σημασίας για την ασφαλή κινητικότητα στο σύστημα και την ασφαλή χρήση της χρήσης του.

Μια ακόμα πρόκληση έγκειται στο ότι η ναυτιλιακή βιομηχανία στερείται εμπειρογνωμόνων σχετικών με την χρήση και επεξεργασία των παραπάνω δεδομένων. Παράλληλα, κρίνεται αναγκαία η δημιουργία ενός νομοθετικού πλαισίου το οποίο θα υπογραφεί τον τρόπο με τον οποίο θα γίνεται η διαχείριση των δεδομένων. Τέλος, δεν υπάρχει αμφιβολία σχετικά με τα πλεονεκτήματα των Big Data, όμως είναι αναγκαίο σε πρώτο στάδιο να εξερευνηθούν ορισμένες προκλήσεις και τεχνικά εμπόδια έτσι ώστε μετέπειτα να γίνει σωστή χρήση του.
Είναι πλέον προφανές ότι, η ναυτιλιακή βιομηχανία κατευθύνεται προς έναν ψηφιοποιημένο κόσμο με γνώμονα τα δεδομένα, με πρόθεση να βρει τις κατάλληλες τεχνολογίες, έτσι ώστε να συνδέσει αποτελεσματικά τις υπηρεσίες της ξηράς και της θάλασσας.

Ως απώτερο σκοπό, τόσο των λιμένων όσο και των ναυτιλιακών εταιριών, είναι η δημιουργία αξίας μέσω των ψηφιακών πληροφοριών, και η υιοθέτηση νέων μυθολογικών προσεγγίσεων για τη διαχείριση των υποδομών, του εργατικού δυναμικού και των λειτουργιών τους, με μια ουσιαστική αλλαγή στις διαδικασίες λήψης αποφάσεων. Συγκεκριμένα, παρόλο που τα πλοία συλλέγουν όλο και περισσότερες πληροφορίες, η συμμετοχή τους στις διαδικασίες λήψης αποφάσεων εξακολουθεί να είναι πολύ περιορισμένη.

Καταλήγουμε στο συμπέρασμα ότι, όλες οι παραπάνω τεχνολογίες που αναφέρθηκαν στο συγκεκριμένο κεφάλαιο διαδραματίζουν σημαντικό ρόλο στην ανάπτυξη και βιωσιμότητα των έξυπνων λιμανιών. Βέβαια, η υιοθέτηση αυτών, απαιτεί υψηλά κεφάλαια σε ορισμένες περιπτώσεις και συνήθως τις εντοπίζουμε σε μεγάλους -σε όγκο κίνησης- εμπορευματοκιβωτίων τερματικούς. Παράλληλα, η υιοθέτηση αυτών από μεσαία λιμάνια κρίνεται απαραίτητη έτσι ώστε να καταστούν ανταγωνιστικότερα και να επιβιώσουν στο μέλλον.

Παρόλα αυτά, μια από τις βασικές προκλήσεις στην υιοθέτηση των συγκεκριμένων τεχνολογιών, είναι η ενσωμάτωση όλων αυτών μέσα στον τερματικό. Ειδικότερα, είναι απαραίτητο να υπάρχει ένα σαφές πλάνο σχετικά με την ενσωμάτωσή τους, από την μεριά των διαχειριστών τερματικών, έτσι ώστε να επιτευχθεί ο μετασχηματισμός σε έξυπνο λιμάνι.
ΚΕΦΑΛΑΙΟ 5: ΠΡΟΚΛΗΣΕΙΣ ΚΑΙ ΕΠΙΤΠΩΣΕΙΣ ΑΥΤΟΜΑΤΙΣΜΟΥ

Εισαγωγή

Αρχικά σε αυτό το κεφάλαιο, θα αναλυθούν οι τρέχουσες και μελλοντικές προκλήσεις που αφορούν την εργασία στα λιμάνια, δεδομένων των κύριων τάσεων που διαμορφώνουν το λιμενικό ανταγωνιστικό περιβάλλον.

Υπό αυτήν την προσέγγιση, η εξέλιξη της λιμενικής εργασίας υποστηρίζεται από τεχνολογικούς παράγοντες όπως η ψηφιοποίηση και ο αυτοματισμός. Η ψηφιοποίηση είναι σε θέση να αυξήσει την απόδοση των λιμένων μέσω βελτιωμένων λειτουργιών, λόγω της τυποποίησης των διαδικασιών, της αύξησης της ποιότητας στις λιμενικές υπηρεσίες και του αποτελεσματικού στρατηγικού σχεδιασμού. Αυτές οι τάσεις διαμορφώνουν ένα νέο πλαίσιο δημιουργώντας νέες προκλήσεις και απειλές για την λιμενική εργασία, δεδομένης της αυξανόμενης ζήτησης για νέες θέσεις εργασίας με επίκεντρο το προσωπικό υψηλής ειδίκευσης (Vaggelas & Camille, 2019).

Είναι ευρέως γνωστό ότι οι καινοτομίες όπως η ατμοηλεκτρική ενέργεια, η ηλεκτρισμός και η μηχανοποίηση οδήγησαν στη βιομηχανική επανάσταση από τα τέλη του 18ου αιώνα και πώς αυτές άλλαξαν τις κοινωνικές οικονομικά, πολιτικά και κοινωνικά.

Από τη δεκαετία του 1980 και μετά, οι Τεχνολογίες Πληροφοριών και Επικοινωνιών (ΤΠΕ) έφεραν σημαντική αύξηση της παραγωγικότητας σε διαφόρους τομείς. Επιπρόσθετα, η υιοθέτηση τους είχε ως αποτέλεσμα α) την ψηφιοποίηση της παραγωγής με την άνοδο του αυτοματισμού και της ρομποτικής β) την ψηφιοποίηση των διαδικασιών επικοινωνιάς και γ) την υιοθέτηση του Internet of Things (IoT), το οποίο αναλύθηκε στο προηγούμενο κεφάλαιο και το οποίο συνδέει αντικείμενα μέσω του Διαδικτύου με αισθητήρες σε δίκτυα που παράγουν μεγάλο όγκο δεδομένων.
Ο στόχος επομένως των προηγούμενων πρωτοβουλιών είναι η μείωση του κόστους και η αύξηση της αποτελεσματικότητας όπως έχει προαναφερθεί και στο κεφάλαιο 4. Παράλληλα όμως με την βελτιωμένη παραγωγικότητα, οι ΤΠΕ επιτρέπουν επίσης τη βελτίωση της ευελιξίας, τη μείωση των περιβαλλοντικών επιπτώσεων και την αύξηση της ασφάλειας (Graetz & Michaels, 2015). Επιπλέον, οι ΤΠΕ έχουν αντίκτυπο στην οργανωτική δομή των εταιρειών, η οποία μπορεί ακόμη και να οδηγήσει σε επαναπροσδιορισμό του συνολικού επιχειρηματικού πεδίου (Venkatraman, 1994).

Το ναυτιλιακό cluster

Η ναυτιλιακή και η λιμενική βιομηχανία αντιμετωπίζουν σημαντικές προκλήσεις λόγω τεχνολογικών, επιχειρησιακών και οργανωτικών εξελίξεων, δημιουργώντας ένα νέο περιβάλλον για την λιμενική εργασία (Vaggelas & Camille, 2019). Η ενσωμάτωση των υπαρχόντων συστημάτων πληροφοριών και επικοινωνιών (ΤΠΕ) και πηγών δεδομένων στο πλαίσιο του λιμένα και η βέλτιστη οργάνωσή τους αποτελεί σημαντικό παράγοντα ανάπτυξης των λιμένων. Για το σκοπό αυτό, η ευθυγράμμιση μεταξύ της στρατηγικής λιμένων και της ψηφιακής στρατηγικής σε συνδυασμό με την συνεργασία μεταξύ των παραγόντων που λειτουργούν στο λιμάνι επιτρέπουν την επίτευξη υψηλότερου επιπέδου καινοτομίας. Ωστόσο, η αυξανόμενη ποσότητα νέων δεδομένων και πληροφοριών δημιουργεί νέες προκλήσεις για τα λιμάνια, απαιτώντας μεγαλύτερη οργανωτική πολυπλοκότητα (Vaggelas & Camille, 2019).

Βέβαια πρέπει να σημειωθεί ότι, οι φορείς εκμετάλλευσης λιμένων συνεχίζουν να επενδύουν σε νέες τεχνολογίες, εργαλεία και μεθόδους με στόχο την αύξηση της παραγωγικότητας των λιμένων καθώς και την αύξηση της ανταγωνιστικότητάς τους σε μια εξαιρετικά ανταγωνιστική αγορά, λαμβάνοντας υπόψη ότι τα λιμάνια διαδραματίζουν σημαντικό ρόλο στο παγκόσμιο δίκτυο εφοδιασμού (Bichou & Gray, 2005).
Ένα από τα χαρακτηριστικά των ΤΠΕ είναι η αντικατάσταση των έντυπων εγγράφων. Σταδιακά λοιπόν, και τα λιμάνια, εισέρχονται σε μια εποχή με λιγότερη γραφειοκρατία. Αυτή η πρόοδος ήταν απαραίτητη στον τομέα της εφοδιαστικής αλυσίδας, λόγω της αυξανόμενης ανάγκης για αποτελεσματικές ροές πληροφοριών και της αυξανόμενης σημασίας της μεταφοράς εμπορευματοκιβωτίων μέσω διατροπικών μεταφορών. Στην πραγματικότητα, στα λιμάνια οι ροές πληροφοριών είναι εξίσου σημαντικές με τις φυσικές ροές αγαθών (Prajogo & Olhager, 2012).

Αυτοματοποίηση των ΣΕΜΠΟ (Automation of container terminals)

Τα περισσότερα περιβάλλοντα είναι πολύ απρόβλεπτα για την εγκατάσταση συστημάτων υψηλής αυτοματοποίησης. Ωστόσο, όταν πρόκειται για ελεγχόμενο περιβάλλον, είναι δυνατή η εκτεταμένη αυτοματοποίηση (Autor, 2015). Αυτή είναι και η περίπτωση των ΣΕΜΠΟ, όπου ο διαχωρισμός των διαφορετικών λειτουργιών, συμβάλλει σε ένα προβλέψιμο και απλό περιβάλλον.

Τα νέα συστήματα ΤΠΕ που δημιουργήθηκαν, όπως η ηλεκτρονική ανταλλαγή δεδομένων (EDI) και τα λειτουργικά συστήματα τερματικών (TOS) μείωσαν ουσιαστικά την εξάρτηση του λιμανιού από τα έντυπα έγγραφα (Heilig, Schwarze, & Voss, 2017). Ακόμα, η εφαρμογή συστημάτων ΤΠΕ και δεδομένων σε πραγματικό χρόνο μπορεί να βελτιώσει τη διαφάνεια της εφοδιαστικής αλυσίδας. Σχετικά με αυτό, οι εργασίες που εκτελούνται από τον μεταφορέα θα εξελιχθούν σε μεταφορές όπου ο κύριος στόχος θα είναι η παροχή εξατομικευμένων πληροφοριών για τον πελάτη.

Όλο και περισσότερες εταιρείες και λιμάνια χρησιμοποιούν δεδομένα σε πραγματικό χρόνο στα επιχειρηματικά τους μοντέλα. Με ακριβή δεδομένα και σε πραγματικό χρόνο, οι μεταβαλλόμενες ανάγκες των πελατών μπορούν να ικανοποιηθούν γρηγορότερα, τα σφάλματα να εντοπιστούν πιο γρήγορα και να υποστηριχθεί η διαδικασία λήψης αποφάσεων. Οι δεξιότητες των ΤΠΕ, οι δεξιότητες
μοντελοποίησης, η ανάλυση δεδομένων, οι στατιστικές και η ανάπτυξη λογισμικού θα είναι σημαντικές απαιτήσεις για την πρόσληψη των μελλοντικών υπαλλήλων στους τερματικούς.

Ενδεχομένως, τα καθήκοντα που αφορούν τις ΤΠΕ θα εκτελούνται από τρίτες εταιρείες ή συμβουλευτικές εταιρείες, αλλά η ανάγκη για ανθρώπινο δυναμικό που έχουν γνώση τόσο των ΤΠΕ όσο και του ιδίου του λιμένα θα είναι κρίσιμη για να οδηγήσει στην εξέλιξη των έξυπνων θυρών και τον ψηφιακό μετασχηματισμό στη σωστή κατεύθυνση. Παράλληλα με τις νέες δεξιότητες και την επιδεξιότητα των ΤΠΕ, οι λιμενικές εταιρείες είναι πολύ πιθανό να αναζητούν άτομα που ταιριάζουν στην κουλτούρα των εταιρειών και με τις σωστές στάσεις όπως η ευελιξία, η ανεξαρτησία, η λήψη αποφάσεων σε δύσκολες καταστάσεις και η ευθύνη (Heilig, Schwarze, & Voss, 2017).

Πόσο ευαίσθητη είναι η λιμενική αγορά εργασίας στην καινοτομία; Πόσο ευάλωτες είναι οι θέσεις εργασίας στην καινοτομία της τεχνολογίας των πληροφοριών και της επικοινωνίας (ΤΠΕ) και στην αυτοματοποίηση?

Παρά την πρόοδο αυτή και την υιοθέτηση τεχνολογιών, τα λιμάνια αρχίζουν να υποβαθμίζουν με τις εξελίξεις των ΤΠΕ και παρατηρείται ότι ακόμη και σήμερα χρειάζονται πολλά έγγραφα που αφορούν διοικητικές διαδικασίες ή λειτουργίες του τερματικού. Για παράδειγμα, δεν είναι λίγες οι εταιρείες που εξακολουθούν να χρησιμοποιούν τηλέφωνο και email, ενώ με την χρήση ενός συστήματος cloud based είναι σε θέση να αποδίδουν πιο αποτελεσματικά. Αυτό σημαίνει ότι ορισμένες βασικές εργασίες, οι οποίες μπορούν να αυτοματοποιηθούν και να ψηφιοποιηθούν, θα εξαφανιστούν.

Κατά συνέπεια, το περιεχόμενο της εργασίας θα καταστεί πιο περίπλοκο με την έννοια ότι θα απαιτηθούν περισσότερες γνώσεις και δεξιότητες στο μέλλον. Επιπροσθέτως, θα απαιτηθούν πιο γενικές ικανότητες όπως η γνώση γλωσσών και οι δεξιότητες ΤΠΕ (Vanthillo, Cant, Vanelslander, & Verhetsel, 2018).
Νέες hard και soft δεξιότητες

Αυτές οι αλλαγές έφεραν την λιμενική εργασία στο προσκήνιο και στο επίκεντρο των λιμενικών πρωτοβουλιών. Στην εποχή της ψηφιοποίησης και του αυτοματισμού των λιμένων, η ανάπτυξη νέων hard και soft δεξιοτήτων είναι απαραίτητη για την ενίσχυση της παραγωγικότητας και της αποδοτικότητας της λιμενικής εργασίας. Οι προαναφερθείσες τεχνολογικές τάσεις διαμορφώνουν επομένως, ένα νέο πλαίσιο για την λιμενική εργασία, λόγω της αυξανόμενης ζήτησης για νέες θέσεις εργασίας που εστιάζονται στο προσωπικό υψηλής ειδίκευσης. Αυτό θέτει επίσης προκλήσεις για το υπάρχον λιμενικό προσωπικό (Vaggelas & Camille, 2019).

Η καινοτομία δεν μπορεί να περιοριστεί στην υιοθέτηση μόνο νέων τεχνολογιών. Πράγματι, η καινοτομία είναι εμφανής και στην ανάπτυξη νέων hard και soft δεξιοτήτων. Ειδικότερα, η έννοια των soft δεξιοτήτων περιλαμβάνει μη τεχνολογικές διαστάσεις της καινοτομίας που σχετίζονται με ανθρώπους και οργανισμούς, αγορές και σχέσεις, γνώσεις και εμπειρίες (De Martino, Errichiello, Marasco, & Morvillo, 2013). Επίσης οι soft δεξιότητες, αντιπροσωπεύουν ενδοπροσωπικές δεξιότητες, όπως η ικανότητα διαχείρισης των διαφόρων πόρων στο λιμάνι, καθώς και οι αλληλεπιδράσεις μεταξύ των χειριστών λιμένων.

Από την άλλη μεριά, οι hard δεξιότητες είναι τεχνικές δεξιότητες που αφορούν την χρήση εξοπλισμού, δεδομένων, λογισμικού κ.λπ. (Laker & Powell, 2011). Ειδικότερα, οι hard δεξιότητες αντιπροσωπεύουν τεχνικές δεξιότητες που μπορούν να αποκτηθούν μέσω συγκεκριμένων μαθημάτων κατάρτισης που θα αναφερθούν στην συνέχεια του κεφαλαίου.

Αντίθετα, οι soft δεξιότητες, γνωστές και ως «ανθρώπινες δεξιότητες» ή «διαπροσωπικές δεξιότητες» είναι υποκειμενικές δεξιότητες που είναι πολύ πιο δύσκολο να ποσοτικοποιηθούν σε αντίθεση με τις hard δεξιότητες. Μπορούν ωστόσο να επηρεάσουν το πλαίσιο του λιμένα, όπως για παράδειγμα την επικοινωνία, την ευελιξία, την ηγεσία, την ομαδική εργασία, την σωστή διαχείριση χρόνου. Αυτές αποτελούν μερικές από τις απαραίτητες soft δεξιότητες (Vaggelas & Camille, 2019).
Τα λιμάνια επομένως, παρά την ατελείωτη ανάγκη για hard δεξιότητες και συνεπώς για ένα συνεχές ενημερωμένο λογισμικό, κατάλληλο εξοπλισμό, έγκυρα δεδομένα και πληροφορίες, απαιτούν επίσης soft δεξιότητες για να μεγιστοποιήσουν την αποδοτικότητά τους και να αποκτήσουν μεγαλύτερο μερίδιο αγοράς σε σχέση με τους ανταγωνιστές. Επομένως, η επιτυχία του λιμένα εξαρτάται, ceteris paribus, από τον κατάλληλο συνδυασμό hard και soft δεξιοτήτων (Vaggelas & Camille, 2019).

Νέες δεξιότητες: Ανάπτυξη ειδικών κύκλων μαθημάτων κατάρτισης

Συμπεραίνουμε από τα παραπάνω στοιχεία ότι, κρίνεται επιτακτική η υιοθέτηση τόσο hard όσο και soft δεξιοτήτων από το εργατικό δυναμικό του λιμανιού έτσι ώστε να συμβαδίσει με τις τάσεις της εποχής και να διατηρήσει ανταγωνιστικό πλεονέκτημα. Για να πετύχει όμως ένα τέτοιο εγχείρημα, είναι απαραίτητη η εκπαίδευση και κατάρτιση του ήδη υπάρχοντος εργατικού δυναμικού.

Οι ανάγκες κατάρτισης θα πρέπει να εστιάζονται:

i. Στη μεταβαλλόμενη φύση των λιμενικών θέσεων εργασίας και στις δεξιότητες που απαιτούνται από τη νέα λιμενική πραγματικότητα.

ii. Στα τεχνολογικά προϊόντα, υπηρεσίες και εργαλεία που μπορούν να εφαρμοστούν σε έναν λιμένα.

iii. Στην αυτό-ανάπτυξη του λιμένα.

iv. Προς εργαζομένους, οι οποίοι θα μπορούν να εκτελούν πολλαπλές εργασίες ταυτόχρονα (multitasking).

v. Σε ειδικευμένες λειτουργίες του λιμανιού.

vi. Σε νέες προοπτικές σταδιοδρομίας στη λιμενική βιομηχανία.

(Vaggelas & Camille, 2019).

Πρώτα από 'όλα, είναι αναγκαίο τα λιμάνια να επαναπροσδιορίσουν τις απαραίτητες δεξιότητες που απαιτούν από τους εργαζομένους. Αυτό διότι, τα τελευταία χρόνια έχουν συμβεί πολλές αλλαγές στην λιμενική βιομηχανία αλλά και στο λιμενικό πλαίσιο λόγω τεχνολογικών, επιχειρησιακών και οργανωτικών εξελίξεων.
Πιο συγκεκριμένα:

1) Δεδομένων των συνεχών εξελίξεων της τεχνολογίας, πρέπει να αναπτυχθούν ειδικά εκπαιδευτικά μαθήματα για να συμβαδίζουν με τις καινοτομίες.

2) Η αυτο-ανάπτυξη του λιμενικού προσωπικού πραγματοποιείται μέσω μιας διαδικασίας δημιουργίας εμπειριών και γνώσεων ειδικά σε ένα νέο λιμενικό περιβάλλον.

3) Η ψηφιοποίηση και ο αυτοματισμός στη σύγχρονη ναυτιλιακή και λιμενική βιομηχανία απαιτούν λιγότερους εργαζομένους, οι οποίοι όμως θα είναι πιο ευέλικτοι και σε θέση να εκτελούν διάφορες εργασίες. Για το λόγο αυτό, οι εργαζόμενοι που εκτελούν πολλαπλές εργασίες καθώς οι multiskilled λειτουργίες του λιμανιού γίνονται ολοένα και πιο συνηθισμένες στα λιμάνια.

4) Χάρη σε αυτές τις εξελίξεις, αναδύονται νέες ευκαιρίες στάδιοδρομίας στα λιμάνια. Για παράδειγμα, οι μηχανικοί λογισμικού και υλικού θα αποτελέσουν βασικά επαγγέλματα στο άμεσο μέλλον μαζί με προγραμματιστές, σχεδιαστές κ.λπ.

Βέβαια, οι ανάγκες εκπαίδευσης ικανοποιούνται μέσω μιας ολιστικής προσέγγισης κατάρτισης, που αποτελείται από διαφορετικές φάσεις:

1) Ανάλυση αναγκών κατάρτισης.

2) Σχεδιασμός εκπαιδευτικού προγράμματος.

3) Τρόπος εκπαίδευσης.

4) Αξιολόγηση της εκπαίδευσης και κατάρτισης.

(Northern Ireland Business, 2019)
Σχήμα 2: Προσέγγιση κατάρτισης εργαζομένων

Πηγή: (Northern Ireland Business, 2019).

Πλεονεκτήματα και μειονεκτήματα της τεχνολογικής ανάπτυξης στα λιμάνια

Πίνακας 4: Πλεονεκτήματα και μειονεκτήματα της τεχνολογικής ανάπτυξης για την λιμενική εργασία

<table>
<thead>
<tr>
<th>Πλεονεκτήματα</th>
<th>Μειονεκτήματα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αυξανόμενη ζήτηση για εργατικό δυναμικό υψηλής ειδίκευσης</td>
<td>Ασφάλεια εργασίας, απώλεια θέσεων εργασίας χαμηλής εξειδίκευσης</td>
</tr>
<tr>
<td>Βελτίωση των συνθηκών υγείας και ασφάλειας</td>
<td>Αλλαγές στις αρμοδιότητες των εργαζομένων</td>
</tr>
<tr>
<td>Αύξηση της παραγωγικότητας της εργασίας</td>
<td>Οι εργασίες γίνονται ολοένα και πιο ψυχικά απαιτητικές</td>
</tr>
<tr>
<td>Άμεσες επιπτώσεις στη ροή εργασία</td>
<td>Αλλαγές στα ωράρια των εργαζομένων</td>
</tr>
</tbody>
</table>

Πηγή: (Vaggelas & Camille, 2019)
Τα σύγχρονα λιμάνια χαρακτηρίζονται από λειτουργίες εντάσεως κεφαλαίου και εντάσεως τεχνολογίας. Αυτή είναι μια θεμελιώδης τάση μέσα σε ένα ανταγωνιστικό περιβάλλον, όπου η τεχνολογία, στο παρελθόν, δεν αποτελούσε τον βασικό παράγοντα επιτυχίας ενός λιμανιού.

Επίσης, τα συστήματα πρόσληψης εργατικού δυναμικού έχουν αλλάξει τα τελευταία χρόνια και πιο συγκεκριμένα έχουν μετατραπεί σε σταθερότερες μορφές απασχόλησης με μόνιμες συμβάσεις, ειδικά για το προσωπικό με υψηλό επίπεδο εξειδίκευσης. Αυτό από μόνο του αποτελεί μια αλλαγή, καθώς το προηγούμενο λιμενικό πλαίσιο χαρακτηρίζοταν κυρίως από τη ρύθμιση της περιστασιακής πρόσληψης εργασίας.

Η εκπαίδευση για τα διάφορα καθήκοντα και εργασίες που πρέπει να εκτελεστούν στο πλαίσιο του λιμένα εξελίσσεται επίσης από την άτυπη, πρακτική εξάσκηση προς την ’’επίσημη’’ εκπαίδευση. Με αυτό, εννοείται η πιο μεθοδική και συγκεκριμένη εκτέλεση εργασιών με σαφή τρόπο από το εργατικό δυναμικό

Παράλληλα, οι νέες δεξιότητες που πρέπει να αποκτηθούν από την μεριά του προσωπικού, για να ανταποκριθούν σε μελλοντικές ανάγκες του λιμανιού χρειάζονται επίσης, για την δημιουργία νέων προγραμμάτων εκπαίδευσης και κατάρτισης. Είναι ακόμα προφανές ότι, η αυξανόμενη παρουσία τεχνολογικών εργαλείων στα λιμάνια επιτρέπει την απασχόληση όχι μόνο ανδρών εργαζομένων, αλλά και γυναικών δημιουργώντας ένα πιο διαφοροποιημένο εργατικό περιβάλλον.
Πίνακας 5: Η εξέλιξη της λιμενικής εργασίας (πριν και μετά)

<table>
<thead>
<tr>
<th>ΠΡΙΝ</th>
<th>ΜΕΤΑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μεμονωμένη ειδικευμένη εργασία</td>
<td>Εργαζόμενοι με πληθώρα δεξιοτήτων</td>
</tr>
<tr>
<td>Μεγάλος φόρτος εργασίας</td>
<td>Λειτουργίες βασισμένες στην ένταση κεφαλαίου</td>
</tr>
<tr>
<td>Συστήματα πιστοποίησης βάσει του λιμένα ή του τερματικού</td>
<td>Εναρμονισμένα συστήματα πιστοποίησης με τους διεθνείς κανονισμούς</td>
</tr>
<tr>
<td>Περιστασιακή πρόσληψη εργαζομένων</td>
<td>Μόνιμη απασχόληση</td>
</tr>
<tr>
<td>Ατυπή εκπαίδευση κατά την εργασία</td>
<td>Επίσημη εκπαίδευση</td>
</tr>
<tr>
<td>Κατά βάση ανδρικό εργατικό δυναμικό</td>
<td>Ισότητα 2 φύλλων και ίσες ευκαιρίες</td>
</tr>
</tbody>
</table>

Πηγή: (Vaggelas & Camille, 2019)

Με βάση τον παραπάνω πίνακα, αλλά και με αυτά που προαναφέρθηκαν στο συγκεκριμένο κεφάλαιο, η τεχνολογική, επιχειρησιακή και οργανωτική ανάπτυξη επιτρέπει την επίτευξη αυξανόμενου επιπέδου ζήτησης για νέες θέσεις εργασίας και ρόλους, με έμφαση στις hard και soft δεξιότητες για την λιμενική εργασία.

Παράλληλα, η τεχνολογική εξέλιξη δημιουργεί καλύτερες συνθήκες υγείας και ασφάλειας στους χώρους εργασίας του λιμένα, με αυξανόμενη παραγωγικότητα εργασίας, χάρη στην τακτική παρακολούθηση των λιμενικών λειτουργιών και των συστημάτων ασφάλειας που εφαρμόζονται στο πλαίσιο του λιμένα, προκειμένου να συμμορφωθούν με τους πιο αυστηρούς κανονισμούς ασφάλειας και προστασίας.

Η αναμενόμενη μετάβαση “from strength to skill” στον τομέα της λιμενικής εργασίας θα απαιτήσει νέες hard και soft δεξιότητες για τους εργαζόμενους, αυξάνοντας έτσι την ανάγκη για ειδικά προγράμματα κατάρτισης και πιστοποιήσεις.

Στο τρέχον πλαίσιο του λιμένα υπάρχει ανάγκη για:

i. Εξειδικευμένο προσωπικό.
ii. Νέες δυνατότητες για την λιμενική εργασία.
iii. Εκμετάλλευση της ανθρώπινης διεπαφής με τον τεχνολογικό εξοπλισμό.
iv. Αναθεώρηση του ρόλου και των δεξιοτήτων της λιμενικής εργασίας.
Ένα άλλο αποτέλεσμα της τεχνολογικής ανάπτυξης, είναι η δημιουργία στρατηγικών θέσεων εργασίας με άμεσο αντίκτυπο στη ροή εργασίας, που χαρακτηρίζεται από στοιχεία όπως η αλληλεξάρτηση και η μη δυνατότητα υποκατάστασης. Από την άλλη πλευρά, η εξέλιξη της λιμενικής εργασίας φέρνει προκλήσεις, όπως η απώλεια θέσεων εργασίας, ιδίως για θέσεις εργασίας χαμηλής ειδίκευσης και αλλαγές στις απαιτήσεις στις θέσεις εργασίας, λόγω των διαφορετικών δεξιοτήτων που επιβάλλονται από τάσεις όπως η ψηφιοποίηση και ο αυτοματισμός. Όλα τα παραπάνω, καθιστούν εν ολίγοις τις υφιστάμενες λιμενικές εργασίες όλο και πιο διανοητικά απαιτητικές.

Μελλοντικές προκλήσεις που θα χρειαστεί να αντιμετωπίσουν οι λιμενικοί εργαζόμενοι

Οι προαναφερθείσες τεχνολογικές εξελίξεις (δηλ. ψηφιοποίηση και αυτοματοποίηση), διαμορφώνουν ένα νέο πλαίσιο για την λιμενική εργασία μέσω της αυξανόμενης ζήτησης για θέσεις εργασίας υψηλής ειδίκευσης, θέτοντας με αυτόν τον τρόπο προκλήσεις για το υπάρχον λιμενικό προσωπικό (λιμενεργάτες και διαχειριστές λιμένων).

Από τη μία πλευρά, υπάρχει ζήτηση για εξειδικευμένο προσωπικό που μπορεί να σχεδιάσει και να αναπτύξει τεχνολογικά προηγμένα εργαλεία και από την άλλη πλευρά υπάρχει ανάγκη για προσωπικό λιμένα που μπορεί να χρησιμοποιήσει και να χειριστεί αυτά τα εργαλεία.

Λόγω της εισαγωγής αυτών των νέων εργαλείων, το προσωπικό του λιμένα πρέπει να είναι καλά εφοδιασμένο με τις απαραίτητες δεξιότητες. Σε αυτό το πλαίσιο, η διεπαφή ανθρώπου-μηχανής αποτελεί ένα σημαντικό παράγοντα ανταγωνιστικότητας, με το προσωπικό του λιμένα να μπορεί να εκμεταλλεύεται τις μηχανές με τον καλύτερο δυνατό τρόπο, προκειμένου να εξασφαλιστεί μεγαλύτερη απόδοση για το λιμάνι.
Συμπέρασμα: Αγορά εργασίας, δεξιότητες και ικανότητες στο λιμάνι του μέλλοντος

Καταλήγουμε στο εύλογο συμπέρασμα ότι, τα λιμάνια αντιμετωπίζουν ολοένα και περισσότερο μια αύξηση της εισαγωγής και της αυτοματοποίησης των ΤΠΕ τόσο στο ναυτιλιακό σύμπλεγμα (cluster) όσο και στο μη ναυτιλιακό σύμπλεγμα. Σε σύγκριση με άλλους τομείς, παρατηρείται ότι η ναυτιλιακή βιομηχανία υποτελεί στην εισαγωγή ΤΠΕ, επηρεάζοντας έτσι και την ναυτιλιακή εφοδιαστική αλυσίδα. Συνοπτικά, η εισαγωγή των ΤΠΕ και η αυτοματοποίηση, απαιτούν νέες και πιο συγκεκριμένες δεξιότητες. Οι ΤΠΕ όπως φαίνεται θα διεισδύσουν σε όλα τα επίπεδα και σε όλους τους τομείς. Συμπεραίνουμε ακόμα ότι, οι δεξιότητες επικοινωνίας και συνεργασίας θα είναι ολοένα και πιο σημαντικές, όπως η ανάλυση και η ερμηνεία των δεδομένων.

Τέλος, από τι φαίνεται, οι θέσεις εργασίας που απαιτούν χαμηλότερη εκπαίδευση θα αλλάξουν σε σημαντικό βαθμό. Δουλεύοντας σε ένα τεχνολογικά ανεπτυγμένο περιβάλλον, οι δεξιότητες των λιμενεργατών είναι σίγουρα ότι κάποια στιγμή θα αλλάξουν και αυτό θα συνεχιστεί στο μέλλον. Μια ενέργεια των λιμένων θα μπορούσε να είναι η προσφορά ειδικών προγραμμάτων κατάρτισης σε λιμενεργάτες που ήδη εργάζονται στο λιμάνι, έτσι ώστε να τους δοθεί κίνητρο για να βελτιωθούν στην δουλεία τους.

Επομένως, βάσει της μελλοντικής αλλαγής στο γνωστικό αντικείμενο των εκάστοτε λιμενικών εργασιών, μια ενέργεια των λιμένων που κινείται προς αυτή την κατεύθυνση, θα μπορούσε να είναι η προσφορά ειδικών προγραμμάτων προς το υπάρχον εργατικό προσωπικό, με στόχο την μετεκπαίδευση του, ώστε να μπορεί να ανταποκριθεί στις νέες συνθήκες που θα έχουν δημιουργηθεί στον χώρο εργασίας.
ΚΕΦΑΛΑΙΟ 6: Συμπεράσματα

Ο κύριος στόχος αυτής της πτυχιακής εργασίας ήταν να εξετάσει το concept των έξυπνων λιμανιών και τα στάδια για να φτάσει ένα λιμάνι να χαρακτηρίζεται ως έξυπνο και φιλικό προς το περιβάλλον. Συμπεραίνουμε, ότι ο μετασχηματισμός αυτός θα μπορούσε να χαρακτηριστεί ως αρκετά δύσκολο και πολύπλοκο τελικά, λόγω αρκετών παραγόντων. Μερικοί από αυτούς, είναι τα υψηλά κεφάλαια που απαιτούνται, η δυσκολία ενσωμάτωσης όλων των τεχνολογιών καθώς και η πολυπλοκότητα όσον αφορά την λήψη αποφάσεων.

Βέβαια, τα οφέλη μεσώ της υιοθέτησης αυτών των τεχνολογιών, είναι ζωτικής σημασίας για το λιμάνι, καθώς το μέλλον της λιμενικής βιομηχανίας ήδη χαρακτηρίζεται ως ψηφιακό και αυτοματοποιημένο.

Παράλληλα όμως, επικρατεί αρκετό προβληματισμός και αβεβαιότητά σχετικά με το μέλλον της λιμενικής εργασίας. Αυτό δικαιολογείται, από την εκτεταμένη αυτοματοποίηση των λειτουργιών του τερματικού και την εισροή καινοτόμων τεχνολογιών. Λόγω των παραπάνω, οι απαιτήσεις για του εργαζόμενουs θα αυξηθούν καθώς για να παραμείνουν ανταγωνιστικοί στο επάγγελμά τους, θα χρειαστεί να “αναπτύξουν” νέες hard και soft δεξιότητες. Σε πολλές περιπτώσεις κάτι τέτοιο, μπορεί να αποβεί μοιραίο για την επαγγελματική πορεία πολλών που ήδη εργάζονται και είναι αντίθετοι σε μια τέτοια αλλαγή.

Βέβαια, σε μια τέτοια περίπτωση, οι ενέργειες του λιμανιού είναι υψίστης σημασίας, καθώς έχει την ευκαιρία και δυνατότητα να αναπτύξει εκπαιδευτικά προγράμματα και σεμινάρια που απευθύνονται στους εργαζόμενους. Με αυτόν τον τρόπο, τα λιμάνια μπορούν να εκπαιδεύσουν το ήδη υπάρχον προσωπικό μειώνοντας σε σημαντικό βαθμό το λειτουργικό κόστος και δημιουργώντας ένα περιβάλλον υψηλής εξειδίκευσης.
ΚΕΦΑΛΑΙΟ 7: ΒΙΒΛΙΟΓΡΑΦΙΑ

EDI BASICS. (2020). *What is EDI (Electronic Data Interchange)?* Ανάκτηση από EDI BASICS: https://www.edibasics.com/what-is-edi/

Northern Ireland Business. (2019). NIBUSINESSINFO.CO.UK. Retrieved from Training your staff, How to identify staff training needs: https://www.nibusinesstinfo.co.uk/content/how-identify-staff-training-needs

PEMA. (2012). CONTAINER TERMINAL YARD AUTOMATION.

Port of Rotterdam, British Ports Association Port Futures. (2019). MOVE FORWARD: STEP BY STEP TOWARDS A DIGITAL PORT.

