ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΘΕΩΡΙΑΣ ΚΙΝΔΥΝΟΥ ΣΤΗ ΦΑΡΜΑΚΟΚΙΝΗΤΙΚΗ

Τσαχουρίδου – Παπαδάτου Βασιλεία

ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ

Επιβλέπων: Χρήστος Κουντζάκης Επίκουρος Καθηγητής
Δημήτρης Κωνσταντινίδης Καθηγητής
Στέλιος Ζήμερας Μόνιμος Επίκουρος Καθηγητής

Σάμος Φεβρουάριος 2018
1. Περίληψη

Σκοπός της παρούσας εργασίας είναι η εισαγωγή στις έννοιες της φαρμακοκινητικής και της χημικής κινητικής οι οποίες ανήκουν στον κλάδο της φαρμακολογίας. Στόχος είναι η μοντελοποίηση κάποιων στοιχειωδών χημικών αντιδράσεων με τη βοήθεια του νόμου δράσης μάζας ώστε να γίνει μια πρώτη πρόβλεψη για τις μετακινήσεις του φαρμάκου στον οργανισμό και για την ταχύτητα με την οποία αυτές συμβαίνουν. Στη συνέχεια και αφού γίνει η επίλυση των συνήθων διαφορικών εξισώσεων που θα έχουμε δημιουργήσει θα μετατρέψουμε τις διαφορικές εξισώσεις σε στοχαστικές διαφορικές εξισώσεις μέσω των διαταραχών ώστε να συμπεριλάβουμε στα μοντέλα μας την τυχαιότητα που προκύπτει στις μετακινήσεις των χημικών ουσιών από άλλους παράγοντες (αντίδραση του οργανισμού στις χημικές ουσίες του φαρμάκου). Τέλος για την καλύτερη πρόβλεψη της μεταβολής της χημικής ουσίας στο χρόνο θα εισάγουμε τα μοντέλα Διάχυσης – Άλματος (Jump – Diffusion) και θα παραστήσουμε τη λήψη φαρμάκου μέσω μιας σύνθετης Poisson διαδικασίας.
Abstract

The aim of the present work is to introduce the concepts of pharmacokinetics and chemical kinetics which belong to the field of pharmacology. The goal is to model some elemental chemical reactions by means of mass action law to make a first provision for the movements of the drug in the body and the speed with which they occur. Then, and after solving the usual differential equations we have created, we will convert differential equations into stochastic differential equations through disturbances to include in our models the randomness that occurs in the movement of chemicals by other factors (reaction of the organism to chemical substances of the drug). Finally, to better predict chemistry change over time, we will introduce Jump - Diffusion models and illustrate drug taking through a complex Poisson process.
Περιεχόμενα

1. Περίληψη .. 2
2. Διαφορικές εξισώσεις στη Χημική κινητική και εξήγηση της μορφής τους 6
 2.1. εισαγωγή στην έννοια της φαρμακοκινητικής .. 6
 2.2. Εισαγωγή στην έννοια της χημικής κινητικής .. 7
 2.3. Νόμος δράσης μάζας ... 9
 2.4. Παραδείγματα στοιχειωδών χημικών αντιδράσεων ... 9
 2.5. Εξίσωση Arrhenius .. 12
 2.6. Διάχυση .. 14
3. Στοχαστικές διαφορικές εξισώσεις στη χημική κινητική .. 15
 3.1. Χρήσιμοι ορισμοί στοχαστικών διαδικασιών .. 15
 3.1.1. Στοχαστική ανέλιξη (σ.α) .. 15
 3.1.2. Αλυσίδα Markov .. 16
 3.1.3. Στάσιμη κατανομή .. 17
 3.1.4. Τυχαίος περίπατος .. 17
 3.1.5. Λευκός θόρυβος ... 18
 3.1.6. Κίνηση Brown ... 19
 3.2. Ντετερμιστικό – Στοχαστικό σύστημα ... 19
 3.3. Στοχαστικό ολοκλήρωμα και Στοχαστική διαφορική εξίσωση 20
 3.4. Ολοκλήρωμα Ito ... 22
 3.5. Στοχαστικό Ανάπτυγμα Taylor (Formula Ito) ... 23
 3.6. Παραδείγματα μετατροπής και λύσης χημικών εξισώσεων σε στοχαστικές 25
 3.7. Περιγραφή προβλήματος γνήσιας διάχυσης .. 30
4. Μοντέλα κινδύνου και στοχαστικές διαφορικές εξισώσεις με άλματα στη χημική κινητική (φαρμακοληψία) ... 31
 4.1. Μοντέλα jump-diffusion (Άλματα-διάχυσης) .. 32
 4.2. Ανέλιξη Poisson ... 32
 4.3. Σύνθετη ανέλιξη Poisson .. 34
 4.4. Κίνηση Brown για Levy ανέλιξεις .. 36
 4.5. Διαδικασίες Levy ... 37
 4.6. Απείρως διαιρέσιμη κατανομή ... 37
 4.7. Levy-khintchine formula .. 38
 4.8. Levy-khintchine formula για Levy διαδικασίες ... 40
4.9. Παραδείγματα διαδικασιών Levy ... 40
4.10. Γραμμική κίνηση Brown .. 43
4.11. Διάσπαση Levy-Ito και δομή διαδρομής .. 44
4.12. Τυχαία μέτρα Poisson ... 47
4.13. Διαδιακασία εφαρμογής σε στοχαστικές διαφορικές χημικές εξισώσεις 53
6. Συμπεράσματα ... 56
7. Βιβλιογραφία .. 57
2. Διαφορικές εξισώσεις στη Χημική κινητική και εξήγηση της μορφής τους.
Στο κεφάλαιο αυτό αρχικά θα δοθούν κάποιοι χρήσιμοι ορισμοί για τον κλάδο της φαρμακολογίας, τη φαρμακοκινητική καθώς και τη χημική κινητική. Στη συνέχεια θα εισάγουμε κάποιες βασικές χημικές εξισώσεις, τη διαφορική τους μορφή μέσω αυτής πως γίνεται η μετατροπή της μίας χημικής ουσίας σε άλλη.

2.1. Εισαγωγή στην έννοια της φαρμακοκινητικής
Η φαρμακοκινητική είναι ένας κλάδος της φαρμακολογίας ο οποίος εξετάζει τις μετακινήσεις του φαρμάκου μέσα στο σώμα στην πορεία του χρόνου. Για το λόγο αυτό σχετίζεται και με τη χημική κινητική που η μελέτη της θα μας απασχολήσει ιδιαίτερα σε αυτό το κεφάλαιο. Ας αναφέρουμε πολύ συνοπτικά τα στάδια που περνάει ένα φάρμακο από τη στιγμή που εισέρχεται στο σώμα.

- Απορρόφηση
Είναι η διαδικασία με την οποία η ύλη (ή η ενέργεια) εισέρχεται σε ένα ενεργό ή παθητικό σύστημα, όπως για παράδειγμα είναι ο οργανισμός μας. Πιο χρήσιμος ορισμός για αυτό που πρόκειται να μελετήσουμε είναι η απορρόφηση όσο αφορά τον τομέα της χημείας. Στη χημεία λοιπόν, απορρόφηση είναι η ιδιότητα που έχουν οι χημικές ουσίες να απορροφούνται ολοκληρωτικά η μία από την άλλη.

- Κατανομή
Είναι η διεργασία κατά την οποία το φάρμακο φεύγει από το αίμα και εισέρχεται στο χώρο εξωκύτταρου υγρού ή στα κύτταρα των υγρών.

- Μεταβολισμός
Τα φάρμακα θεωρούνται ξένα σώματα ως προς τον ανθρώπινο οργανισμό. Για το λόγο αυτό μεταβολίζονται μέσω των ενζύμων. Ο μεταβολισμός είναι μια σημαντική διαδικασία για τη δράση του φαρμάκου. Με τη βοήθεια των ενζύμων πετυχαίνεται η διάσπαση του φαρμάκου κατά την οποία εκκρίνονται διάφορες ουσίες μερικές από τις
οποίες απομακρύνονται ώστε να μην επηρεάσουν κάποιο από τα υπόλοιπα όργανα.

- Απέκκριση

Είναι η διαδικασία κατά την οποία αποβάλλονται από τον οργανισμό οι άχρηστες (ή επικίνδυνες) ουσίες του φαρμάκου που προαναφέρθηκαν.

2.2. Εισαγωγή στην έννοια της χημικής κινητικής

Η χημική κινητική ή αλλιώς κινητική των χημικών αντιδράσεων είναι η επιστήμη που μελετά την ταχύτητα των χημικών διεργασιών. Αυτό που κάνει είναι να διερευνά τον τρόπο με τον οποίο επηρεάζεται η ταχύτητα μιας χημικής αντίδρασης από διάφορες συνθήκες τις οποίες θα χρησιμοποιήσουμε ως παραμέτρους και θα εισάγουμε στα μοντέλα μας. Πιο συγκεκριμένα την ταχύτητα μιας χημικής αντίδρασης θα την ορίσουμε με τη βοήθεια του νόμου δράσης μάζας που θα δούμε αναλυτικότερα παρακάτω.

Στόχος μας είναι να προσδιορίσουμε πειραματικά την ταχύτητα της αντίδρασης η οποία προέρχεται από το νόμο και τις σταθερές ταχύτητας. Οι παράγοντες οι οποίοι επηρεάζουν την ταχύτητα των αντιδράσεων είναι οι ακόλουθοι:

- Φύση των αντιδρώντων

Ανάλογα με τις ουσίες που πρόκειται να αντιδράσουν διαμορφώνεται και ο ρυθμός αντίδρασης. Άρα είναι ένα μέτρο που διαφοροποιείται από ουσία σε ουσία και επηρεάζει τη μετατροπή τους από αντιδρώντα σε προϊόντα.

- Φυσική κατάσταση

Με τον όρο φυσική κατάσταση εννοούμε την κατάσταση της χημικής ουσίας. Αν δηλαδή πρόκειται για στερεό, υγρό ή αέριο. Η κατάσταση αυτή επηρεάζει αναμφίβολα το ρυθμό αντίδρασης.

- Συγκέντρωση
Οι αντιδράσεις των ουσιών οφείλονται σε συγκρούσεις των μορίων όπου με τη σειρά τους η ταχύτητα με την οποία συμβαίνουν εξαρτάται από τις συγκεντρώσεις τους. Όσο αυξάνεται η συγκέντρωση τόσο αυξάνεται και η ταχύτητα αντίδρασης των μορίων. Με τον όρο συγκέντρωση εννοούμε την περιεκτικότητα των διαλυμάτων, όπου μια από τις συνηθέστερες μονάδες περιεκτικότητας, με την οποία και θα ασχοληθούμε, είναι η μοριακότητα κατά όγκο. Η μοριακότητα κατά όγκο εκφράζει τα μολ διαλυμένης ουσίας που περιέχονται σε ένα L διαλύματος.

- Θερμοκρασία

Πρόκειται επίσης για μία πολύ σημαντική παράμετρο που επηρεάζει το ρυθμό μιας χημικής αντίδρασης. Περισσότερη θερμότητα επιφέρει, σε ένα μικρό ποσοστό, και μεγαλύτερη ταχύτητα. Αναλυτικότερα η <<προσφορά>> της θερμοκρασίας θα μελετηθεί παρακάτω.

- Καταλύτες

Οι καταλύτες είναι ουσίες οι οποίες επιταχύνουν την ταχύτητα μιας χημικής αντίδρασης αλλά όταν αυτή συμβεί παραμένουν χημικά αμετάβλητοι. Ένας τέτοιος καταλύτης, και μάλιστα από τους σημαντικότερους, είναι τα ένζυμα λεγόμενα ως βιολογικοί καταλύτες. Ακόμα και σε χαμηλότερη θερμοκρασία εξασφαλίζουν ταχύτερη αντίδραση.

- Πίεση

Αυξημένη πίεση σημαίνει και αύξηση ρυθμού θερμότητας και κατά επέκταση αύξηση ταχύτητας αντίδρασης.

Αυτό που θα προσπαθήσουμε να κάνουμε στην πορεία είναι να μελετήσουμε πειραματικά την ταχύτητα των αντιδράσεων όπως αυτή διαμορφώνεται μετρώντας το πώς οι συγκεντρώσεις των αντιδρών αλλάζουν με την πάροδο του χρόνου. Άρα η κυριότερη παράμετρος που θα μας απασχολήσει και την οποία θα συμπεριλάβουμε σε όλα μας τα μοντέλα θα είναι ο χρόνος (t).
Ανακεφαλαιώνοντας είδαμε ότι οι χημικές αντιδράσεις αντιπροσωπεύουν μία οποιαδήποτε διαδικασία μετασχηματισμού μίας χημικής ουσίας σε άλλη. Κάθε χημική αντίδραση έχει μια συγκεκριμένη ταχύτητα με την οποία γίνεται. Η κάθε μία μπορεί να προέρχεται από άλλες χημικές αντιδράσεις. Πιο συγκεκριμένα είναι μια μεταβολή της ύλης όπου μία ή παραπάνω ουσίες μετατρέπονται σε μία ή περισσότερες άλλες. Οι ουσίες που μετατρέπονται (αρχικά στοιχεία) ονομάζονται αντιδρώντα και αυτές που παράγονται (δημιουργούνται) ονομάζονται προϊόντα. Μια από τις βασικότερες ιδιότητες των χημικών αντιδράσεων είναι ότι το συνολικό μοριακό τους βάρος δεν αλλάζει, μένει σταθερό, και απλά μετασχηματίζεται το ήδη υπάρχον (δηλαδή ούτε χάνεται μέρος του αλλά ούτε και δημιουργείται νέο). Οι χημικές αντιδράσεις περιγράφονται με τη βοήθεια χημικών εξισώσεων.

2.3. Νόμος δράσης μάζας

Ο τρόπος με τον οποίο ποσοτικοποιείται η μελέτη ενός φυσικού φαινομένου γίνεται μέσο του Νόμου δράσης μάζας σύμφωνα με τον οποίο ο ρυθμός μιας χημικής αντίδρασης A (dA/dt) είναι ανάλογος με τη συγκέντρωση των αντιδρώντων ([.]) που έχουμε, υψωμένη στη στοιχειομετρική σταθερά τους.

Ας δούμε τώρα πως γίνεται η ποσοτικοποίηση που αναφέραμε παραπάνω μέσα από κάποια παραδείγματα στοιχειωδών χημικών αντιδράσεων.

2.4. Παραδείγματα στοιχειωδών χημικών αντιδράσεων

1) A → B

Σύμφωνα με τον παραπάνω νόμο η αντίδραση αυτή διατυπώνεται ως:

\[\frac{d[A]}{dt} = -K [A]_t \]

Η χημική αντίδραση πάει από ένα στοιχείο A (ουσία) σε ένα στοιχείο B. Αυτό σημαίνει ότι ένα mole του A πάει σε ένα mole του B, \([A]^1 \rightarrow [B]^1\).
Οπότε σύμφωνα με το Νόμο δράσης μάζας στο αριστερό μέλος έχω το ρυθμό τις χημικής αντίδρασης A και στο δεξί τη συγκέντρωση των A (αντιδρώντα) υψωμένη εις την πρώτη και πολλαπλασιασμένη με μία σταθερά (-K). Ο λόγος για τον οποίο είναι αρνητική είναι επειδή έχω διάσπαση της ουσίας A.

Όπως είναι φανερό η παραπάνω εξίσωση είναι μια διαφορική και μάλιστα 1ος τάξης και η λύση που θα δώσει είναι:

$$[A]_t = [A_0]e^{-Kt}$$

Για να δω πως το ένα mole B επανέρχεται σε ένα mole A κάνω την αντίστροφη διαδικασία.

$$A \leftrightarrow B$$

$$\frac{d[B]}{dt} = K[A]_t$$

$$\Rightarrow \frac{d[B]}{dt} = -K[A_0]e^{-kt}$$

Μια λύση θα είναι η

$$[B]_t = c - ce^{-kt}$$, όπου c = A₀ λόγω αρχικής συνθήκης.

$$\Rightarrow [B]_t = A_0 - A_0e^{-kt}$$

$$\Rightarrow [B]_t = A_0 (1 - e^{-kt})$$

2) 2A → B (A + A → B)

$$\frac{d[A]}{dt} = -K[A]^2$$

[10]
Αυτό σημαίνει ότι δύο mole του Α πάνε σε ένα mole του Β,

\[[A]^2 \rightarrow [B]^1 \]. Οπότε σύμφωνα με το Νόμο δράσης μάζας στο αριστερό μέλος έχω το ρυθμό τις χημικής αντίδρασης Α και στο δεξί τη συγκέντρωση των Α (αντιδρώντα) υψωμένη εις το τετράγωνο και πολλαπλασιασμένη με μία σταθερά (-K).

Πρόκειται για μια διαφορική εξίσωση 2ης τάξης και η λύση που θα δώσει είναι:

\[[A]_t = \frac{1}{Kt + [A_0]} \]

3) A + B→ C

Αυτό σημαίνει ότι ένα mole του Α και ένα mole του Β παράγουν ένα mole του Κ.

\[[A]^1[B]^1 \rightarrow [C]^1 \]
\[\frac{d[A]}{dt} = -k[A][B] \]

Πρόκειται για μια διαφορική 2ης τάξης η οποία μπορεί να λυθεί ως χωριζομένων μεταβλητών και η λύση που θα δώσει είναι:

\[[A]_t = e^{-k_2[B]_t + [A_0]} \]

4) αA + βB ⇌ cC + dD

όπου A, B, C, D οι χημικές αντιδράσεις και α, β, c, d οι στοιχειομετρικές σταθερές τους.

Η συγκεκριμένη χημική αντίδραση δε μπορεί να ποσοτικοποιηθεί αν δε τη μετρήσω πρώτα πειραματικά. Πρέπει να τη σπάσω σε στοιχειώδεις αντιδράσεις Μηδενικής, Πρώτης και Δεύτερης τάξης ώστε να εξάγω τη γενική τους μορφή (n+m τάξης)

[11]
Ο συνολικός ρυθμός της αντίδρασης θα είναι

\[K_f [A]^a[B]^b - K_r [C]^c[D]^d \]

Όπου \(K_f \) η σταθερά αναλογίας ευθείας αντίδρασης (αντιδρώντων)

Και \(K_r \) η σταθερά αναλογίας αντίστροφης αντίδρασης (προϊόντων)

Σε συνθήκες χημικής ισορροπίας έχουμε:

\[\Rightarrow \]

και η σταθερά ισορροπίας είναι:

\[K_{eq} = \frac{K_f}{K_r} = \frac{[C]^c[D]^d}{[A]^a[B]^b} \]

Όλα τα παραπάνω είναι οι ρυθμοί με τους οποίους καταναλώνεται το αντιδρών και δημιουργείται το προϊόν.

Τέλος η ταχύτητα με την οποία παράγεται κάθε χημική ένωση εξαρτάται από τη θερμοκρασία (π.χ. φαγητό). Η σταθερά ταχύτητας \(K \) περιγράφεται μέσω της \textit{εξίσωσης Arrhenius}.

\[2.5.\text{Εξίσωση Arrhenius} \]

\[K = A e^{- \frac{E_a}{RT}} \]

\(K \): σταθερά ταχύτητας

\(A \): παράγοντας συχνότητας

\(E_a \): ενέργεια ενεργοποίησης

\(R \): Παγκόσμια σταθερά

\(T \): θερμοκρασία
Το παραπάνω σχήμα δείχνει την πορεία της ένωσης δύο χημικών ουσιών που παράγουν μία τρίτη (το νερό συγκεκριμένα). Ξεκινάνε χωριστά και όταν φτάσουν στην κορυφή έχουμε το λεγόμενο σύμπλοκο (♯) όπου είναι η μεταβατική κατάσταση πριν δώσει νερό. Όπως φαίνεται στο σχήμα εξαρτάται από τη θερμοκρασία σε πόσο χρόνο θα φτάσει στην κορυφή.

Η εξίσωση Arrhenius παρουσιάζει ορισμένες σημαντικές αδυναμίες με αποτέλεσμα να μη μπορούμε τελικά να δούμε την πορεία δύο ή περισσότερων χημικών ουσιών στο χρόνο. Αρχικά βλέπουμε ότι η σταθερά ταχύτητας εξαρτάται από ένα παγκόσμια σταθερά R η οποία όμως γνωρίζουμε ότι αφορά τα μόρια ενός αερίου. Επίσης η εξίσωση αυτή προέρχεται από την κατανομή Maxwell-Boltzmann μια κατανομή που με τη χρήση της περιγράφουμε την ταχύτητα των σωματιδίων , ή πιο απλά υπολογίζει θεωρητικά πως κατανέμονται τα μόρια ενός αερίου. Επομένως δεν είναι κατάλληλο μοντέλο για τις μετακινήσεις του φαρμάκου καθώς αυτές συμβαίνουν σε υγρό περιβάλλον και άρα έχουμε να κάνουμε κατά κύριο λόγο με μόρια υγρών. Για το λόγο αυτό θα περιγράψουμε τις συγκρούσεις των χημικών ουσιών μέσω της διάχυσης η οποία μοντελοποιεί όλες τις χημικές αντιδράσεις ανεξαρτήτων φυσικής κατάστασης των μορίων (στερεά- υγρά- αέρια).
2.6. Διάχυση

Όλα τα παραπάνω χρειάζονται για να ορίσουμε ή προσεγγίσουμε τον τρόπο/χρόνο με τον οποίο γίνεται η διάχυση. Η διάχυση είναι ένα φαινόμενο κατά το οποίο μεταφέρεται η μάζα λόγω κινητικότητας των μορίων. Στην ουσία ως διάχυση εννοούμε την τάση που έχουν τα μόρια των ουσιών να διασκορπίζονται από σημεία υψηλότερης συγκέντρωσης σε σημεία μικρότερης. Βέβαια συμβαίνει και το αντίστροφο αλλά με μικρότερο ρυθμό. Κάποια στιγμή οι συγκεντρώσεις εξισώνονται χωρίς αυτό να σημαίνει ότι σταματάει η μετακίνηση των μορίων η οποία συνεχίζεται, απλά με σταθερό ρυθμό. Μια άλλη προσέγγιση της έννοιας της διάχυσης είναι η αυθόρμητη ανάμειξη δύο ή περισσότερων χημικών ουσιών που στη διάρκεια του χρόνου σχηματίζουν τα επιθυμητά διαλύματα. Τα μόρια δηλαδή της μίας ουσίας αναμειγνύονται με τα μόρια της άλλης. Πρόκειται για μια διάλυση που πραγματοποιείται μέσω της διάχυσης και δημιουργείται ένα διάλυμα του οποίου η συγκέντρωση κατανέμεται ομοιόμορφα.

Για παράδειγμα αν σε ένα ποτήρι νερό ρίξω λίγο λάδι, τα μόρια του λαδιού διαχέονται στο νερό και μετά από χρόνο t έχει κατανεμηθεί σχεδόν ομοιόμορφα. Όταν φτάσει στην κατάσταση αυτή εμείς βλέπουμε ένα ‘ήρεμο’ μείγμα κάτι τι οποίο ισχύει μόνο φαινομενικά. Κάτω από αυτό που βλέπουμε εμείς εξακολουθεί να υπάρχει κινητικότητα των μορίων ώστε να διατηρείται η εικόνα του σταθερή. Η διαταραχή που προκαλείται οφείλεται στις αλλαγές θερμοκρασίας που όπως είπαμε είναι ένας από τους παράγοντες που επηρεάζουν την ταχύτητα των αντιδράσεων. Ο τρόπος με τον οποίο γίνεται η διάχυση (απλώνεται δηλαδή η ουσία) φαίνεται στο παρακάτω σχήμα.
Με τη βοήθεια του σχήματος καταλαβαίνουμε ότι η διάχυση είναι ένα χρονοεξαρτώμενο φαινόμενο και προϋποθέτει την ύπαρξη μιας ανομοιογενούς αρχικής κατανομής των μορίων η οποία με την πάροδο του χρόνου τείνει να ισοκατανείμει τα μόρια αυτά σε όλο το χώρο.

3. Στοχαστικές διαφορικές εξισώσεις στη χημική κινητική
Στο κεφάλαιο αυτό θα μελετήσουμε τη στοχαστική μορφή των χημικών εξισώσεων, μέσω της διάχυσης, που διατυπώσαμε και λύσαμε στο κεφάλαιο 1, ως διαταραχή με κίνηση Brown. Πριν όμως θα δοθούν κάποιοι απαραίτητοι ορισμοί που αφορούν τον κλάδο των στοχαστικών διαδικασιών και τους οποίους θα χρησιμοποιήσουμε παρακάτω στην επίλυση των στοχαστικών διαφορικών εξισώσεων.

3.1 Χρήσιμοι ορισμοί στοχαστικών διαδικασιών

3.1.1 Στοχαστική ανέλιξη (σ.α)
Είναι ένα μαθηματικό μοντέλο το οποίο έχει ως σκοπό να περιγράψει πιθανοθεωρητικά την εξέλιξη ενός πειράματος ή φαινομένου στο χρόνο. Είναι στην ουσία γενίκευση μιας τυχαίας μεταβλητής. Για συγκεκριμένο Ω το πώς συμπεριφέρεται χρονικά μια στοχαστική
ανέλιξη ονομάζεται υλοποίηση και είναι στην ουσία μια ντετερμινιστική συνάρτηση του χρόνου και μάλιστα τυχαία αφού εξαρτάται από τυχαιότητα (έχουμε πείραμα). Πιο απλά είναι μια χρονική σειρά από ισαπέχοντα χρονικά διαστήματα και τυχαίες μεταβολές. Μαθηματικοποιημένα η στοχαστική ανέλιξη συμβολίζεται ως:

\[
\{ X(t) , \ t \in T \} , \ \text{όπου } X(t) \ \text{είναι η τυχαία μεταβλητή και } T \ \text{το σύνολο δεικτών. Αν } T \ \text{αριθμήσιμο σύνολο τότε θα \ έχουμε ανέλιξη διακριτού χρόνου ενώ αν } T \ \text{υπεραριθμήσιμο θα \ έχουμε ανέλιξη συνεχούς χρόνου. Μια (σ.α) διακριτού χρόνου είναι και ο τυχαίος περίπατος.}
\]

3.1.2. Αλυσίδα Markov
Η αλυσίδα Markov είναι μια στοχαστική διαδικασία η οποία μεταβάλλεται από μία κατάσταση σε μία άλλη, δεδομένου ότι έχουμε πεπερασμένο χώρο καταστάσεων. Στην ουσία η μαρκοβιανή ιδιότητα λέει ότι μια μελλοντική κατάσταση εξαρτάται μόνο από το παρόν και καθόλου από το παρελθόν στην προσπάθεια να εξάγουμε πιθανότητες για την εμφάνιση/εξέλιξη μιας κατάστασης. Είναι δηλαδή μια τυχαία κατάσταση η οποία έχει έλλειψη μνήμης για τις προηγούμενες μεταβολές. Για παράδειγμα σε μια ακολουθία δοκιμών, το αποτέλεσμα της \(n+1 \) θα εξαρτάται από τη \(n \)-οστή κατάσταση και όχι από οποιοδήποτε αποτέλεσμα της \(n-1 \). Συνήθως μια μαρκοβιανή αλυσίδα ορίζεται για περιπτώσεις διακριτού χρόνου και χώρου καταστάσεων. Για συνεχή χρόνο, ο οποίος είναι και αυτός που θα μας απασχολήσει κυρίως, θα ορίσουμε τέτοιες αλυσίδες μέσω της ανέλιξης Poisson (\(t \geq 0 \)).

Μαθηματικός ορισμός:
Μια αλυσίδα Markov είναι μια ακολουθία τυχαίων μεταβλητών \(X_1, X_2, \ldots \) με τη μαρκοβιανή ιδιότητα που αναφέραμε παραπάνω. Δηλαδή δεδομένου ότι βρισκόμαστε σε μία κατάσταση την παρούσα στιγμή, οι προηγούμενες και οι μελλοντικές καταστάσεις είναι ανεξάρτητες.

\[
P_r(X_{n+1} = x | X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n)
\]
Όπου οι πιθανές τιμές των $X_i \in S$ και S αριθμήσιμο σύνολο χώρου καταστάσεων.

3.1.3. Στάσιμη κατανομή
Όταν μια κατανομή πιθανότητας έχει σαν κύριο χαρακτηριστικό να περιορίζεται στο μέσω και στη διακύμανση τα οποία και θεωρούνται σταθερά λέγεται στάσιμη κατανομή. Αυτό συμβαίνει γιατί όταν λαμβάνω ένα δείγμα στο οποίο θέλω να μελετήσω τη συμπεριφορά του ως προς το χρόνο, ενώ μπορώ να γνωρίζω το μέσο και τη διακύμανση του, δε μπορώ να ορίσω τη συνδιαπορά του, λόγω μη ύπαρξης δεύτερου δείγματος, και έτσι ‘αναγκάζομαι’ να αγνοήσω στο συγκεκριμένο μέτρο. Το πρόβλημα αυτό μπορεί να απλοποιηθεί με την υπόθεση της στασιμότητας. Επομένως μια στοχαστική διαδικασία λέγεται στάσιμη όταν δε μεταβάλλονται οι ιδιότητες από μια αλλαγή μέτρησης της χρονικής περιόδου. Δηλαδή η συνάρτηση πιθανότητας τη χρονική στιγμή t είναι ακριβώς ίδια με (κατανέμεται με τον ίδιο τρόπο) με την $t+h$, όπου h μια τυχαία χρονική περίοδος κατά μήκος του άξονα του χρόνου. Με λίγα λόγια θέλω ισόνομες στοχαστικές ανελίξεις για όλα τα χρονικά στάδια (η στασιμότητα κατανομής είναι μόνο ως προς το χρόνο).

3.1.4. Τυχαίος περίπατος
Έστω ένα σωματίδιο το οποίο κινείται κατά μήκος του άξονα των πραγματικών αριθμών. Τη χρονική στιγμή $t=0$ το σωματίδιο θα βρίσκεται στη X_0 και στο μέλλον για μία χρονική μονάδα θα κάνει 1 βήμα αριστερά ή 1 βήμα δεξιά ή θα παραμένει στην ίδια θέση. Συνεπώς αν το σωματίδιο τη χρονική στιγμή $n-1$ βρίσκεται στην κατάσταση X_{n-1}, τότε τη χρονική στιγμή n θα βρίσκεται στην κατάσταση:

$$X_n = X_{n-1} + Z_n , n = 1,2,3,...$$
Όπου \(Z_t \) μια ακολουθία από ανεξάρτητες τυχαίες μεταβλητές με κατανομές \(F_i(x), i=1,2,3,... \) τ.ω.:

\[
f_i(x) = P(Z_i = x) = \begin{cases} p, & x=1 \\ q, & x=-1 \\ 1-p-q, & x=0 \\ 0, & \text{αλλού} \end{cases}
\]

Αν ισχύει το παραπάνω η διαδικασία αυτή ονομάζεται απλός τυχαίος περίπατος.

Μαθηματικός ορισμός:

Έστω μια απλή στοχαστική διαδικασία

\[
X_t = \beta X_{t-1} + \epsilon_t \tag{1}
\]

Η παραπάνω στοχαστική διαδικασία ορίζεται από μια αυτόπαλινδρόμηση διαδικασία 1\(^{η}\) τάξης, με \(\epsilon_t \) να ακολουθεί τη διαδικασία λευκού θορύβου. Για \(\beta=1 \) η (1) γίνεται:

\[
X_t = X_{t-1} + \epsilon_t \tag{2}
\]

Το υπόδειγμα (2) είναι γνωστό ως τυχαίος περίπατος.

3.1.5. Λευκός θόρυβος

Λευκό θόρυβο έχω όταν σε μια τυχαία διαδικασία \(\{\epsilon_t\} \) ισχύουν οι εξής 3 υποθέσεις:

- \(\mathbb{E}(\epsilon_t) = 0 \)
- \(\mathbb{V}(\epsilon_t) = \sigma^2 \)
- \(\text{Cov}(\epsilon_t, \epsilon_{t+h}) = 0, \) για όλα τα \(t \) και \(\forall h \neq 0 \)
3.1.6. Κίνηση Brown
Κίνηση Brown είναι μια στοχαστική ανέλιξη \(\{X_t, t \geq 0\} \) συνεχούς χρόνου με τις εξής ιδιότητες:

- Για κάθε \(S > 0 \), \(t > 0 \) η προσαύξηση \(X(t+s) - X(s) \) είναι \(N(0, \sigma^2 t) \)
- \(X_t \) είναι ανέλιξη με ανεξάρτητες προσαυξήσεις
- \(X(t) \) είναι συνεχείς

Η μαρκοβιανή ιδιότητα της \(X(t) \) είναι συνέπεια της ανεξαρτησίας των προσαυξήσεων, αφού \(X(t+s) - X(s) \) όταν \(X(s) = x_0 \) είναι ανεξάρτητη της \(X(t) \) για \(t < s \).

Η κίνηση Brown είναι στην πραγματικότητα η ανέλιξη της διάχυσης την οποία θα δούμε εκτενέστερα και παρακάτω. Στην ουσία είναι η κατάσταση κατά την οποία όταν μικρά σωματίδια εισέλθουν σε ένα υγρό χώρο, παρουσιάζουν άτακτη κίνηση η οποία οφείλεται στις τυχαίες συγκρούσεις με τα μόρια του υγρού.

3.2. Ντετερμινιστικό – Στοχαστικό σύστημα
Ντετερμινιστικό σύστημα είναι αυτό που η μελλοντική κατάστασή του, \(A_t \), καθορίζεται από δεδομένες αρχικές τιμές του συστήματος \(A_0 \), και δεν υπάρχει τυχαίως στην εξέλιξη του \(A \) ενώ σε ένα Στοχαστικό σύστημα για δεδομένες αρχικές τιμές \(A_0 \), έχουμε περισσότερες από μία μελλοντικές καταστάσεις \(A_t \) και μάλιστα οι καταστάσεις αυτές δεν είναι ισοπίθανες. Έτσι στην πρώτη περίπτωση για την επίλυση τους χρησιμοποιούμε απλές μαθηματικές μεθόδους από τους τομείς των διαφορικών εξισώσεων, της χημείας και της φυσικής (κεφάλαιο 1), ενώ στη δεύτερη είναι απαραίτητη η χρήση στοχαστικών διαδικασιών όπως δίνονται από τους παραπάνω ορισμούς.

Μια χημική εξίσωση μπορεί να μετατραπεί από ντετερμινιστική σε στοχαστική μέσω των διαταραχών. Είναι στην ουσία χημικές εξισώσεις που ο χρόνος αντίδρασή τους εξαρτάται από αρχικές συνθήκες μέσα από τις οποίες και αναλύεται. Οι εξισώσεις αυτές θα μας οδηγήσουν σε
μη γραμμικά συστήματα είτε λόγο των αρχικών συνθηκών είτε λόγω μη
περιοδικότητας. Άρα λοιπόν ενώ στις απλές χημικές εξισώσεις
μπορούσα να καθορίζω το σύστημά μου (αιτιοκρατικό ή
νετερμινιστικό) στις στοχαστικές δε μπορώ λόγω των διαταραχών που
συμβαίνουν και μάλιστα με κίνηση Brown. Διαταραχές είναι οι κινήσεις
που συμβαίνουν στην ενέργεια και αφού γίνονται μέσω κίνησης Brown
eίναι τυχαίες.

Πριν προχωρήσουμε όμως στην μετατροπή των διαφορικών εξισώσεων
σε στοχαστικές διαφορικές εξισώσεις θα ορίσουμε αναλυτικότερα
cάποιες έννοιες του στοχαστικού ολοκληρώματος και του στοχαστικού
αναπτύγματος Taylor το οποίο και θα χρησιμοποιήσουμε για τη λύση
tους.

3.3. Στοχαστικό ολοκλήρωμα και Στοχαστική διαφορική
εξίσωση

Για να κατασκευάσουμε ένα στοχαστικό ολοκλήρωμα χρειάζεται να
ορίσουμε τις στοχαστικές διαφορικές εξισώσεις οι οποίες
μοντελοποιούν καλύτερα από τις νετερμινιστικές διαφορικές εξισώσεις
dιάφορα φυσικά φαινόμενα. Στοχαστική διαφορική εξίσωση
ονομάζουμε μια εξίσωση της μορφής:

\[dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dB_t \quad , (1) \]

\[X_0 = x_0 \]

Όπου \(\mu, \sigma : [0, \infty) \times R \rightarrow R \) μετρήσιμες συναρτήσεις , \(X_0 \in R \) και \(B \)
μονοδιάστατη κίνηση Brown. Όταν \(\sigma \equiv 0 \) η (1) όπως παρατηρούμε
eίναι η γενική μορφή της συνήθους διαφορικής εξίσωσης πρώτης τάξης.

Ας θεωρήσουμε τη διήθηση \((F_t)_{t \geq 0} \) που παράγεται από την κίνηση Brown

\[F_t := \sigma(\{B_s: s \varepsilon [0, t]\}) \forall t \geq 0 \]

Η λύση της σχέσης (1) είναι κάθε ανέλιξη \((X_t)_{t \geq 0} \) που ικανοποιεί τα
παρακάτω:
• Έχει συνεχή μονοπάτια.
• Προσαρμοσμένη στην \((F_t)_{t \geq 0}\)
• Για κάθε \(t > 0\) με \(p = 1\) ισχύει:

\[
\int_0^t |\mu(s, X_s)| d_s < \infty \text{ και } \int_0^t \sigma^2(s, X_s) d_s < \infty
\]

• Με \(p = 1\) ισχύει:

\[
X_t = X_0 + \int_0^t \mu(s, X_s) d_s + \int_0^t \sigma^2(s, X_s) dB_s \quad \forall t > 0
\]

Πριν ολοκληρώσουμε τον ορισμό του στοχαστικού ολοκληρωμάτος πρέπει να αναφερθούμε στη σημασία των συναρτήσεων \(\mu, \sigma\).

Έστω \(\mu, \sigma\) φραγμένες και συνεχείς συναρτήσεις. Με τη βοήθεια της σχέσης:

\[
X_t = X_0 + \int_0^t \mu(s, X_s) d_s + \int_0^t \sigma^2(s, X_s) dB_s \quad \forall t > 0
\]

έχουμε,

\[
E(X_{t+h} - X_t | F_t) = \int_t^{t+h} E(\mu(s, X_s) | F_s) d_s \approx h\mu(t, X_t)
\]

όπου \(\mu(t, x)\) δείχνει το ρυθμό της μέσης μεταβολής της \(x\) στο χρόνο \(t\) δεδομένης της πληροφορίας \(F_t\) (του παρελθόντος δηλαδή) για \(X_t = x\).

tώρα όσον αφορά το \(\sigma\) έχουμε:

\[
Var(X_{t+h} - X_t | F_t) = E((X_{t+h} - X_t - E(X_{t+h} - X_t | F_t))^2 | F_t)
\]

\[
= E \left(\left\{ \int_t^{t+h} (\mu(s, X_s) - E(\mu(s, \mu(s, X_s) | F_t)) d_s + \int_t^{t+h} \sigma(s, X_s) dB_s \right\}^2 | F_t \right)
\]

\[
= o(h) + E(\left\{ \int_t^{t+h} \sigma(s, X_s) dB_s \right\}^2 | F_t)
\]

\[
= E \left(\int_t^{t+h} \sigma^2(s, X_s) d_s | F_t \right) + o(h)
\]
όπου \(o(h) \) μια \(g(h) \) συνάρτηση με την ιδιότητα \(\lim_{h \to 0} \frac{g(h)}{h} = 0 \)

Επομένως δεδομένου ότι \(X_t = x \) για μικρό \(h \) η διασπορά της μεταβολής \(X_{t+h} - X_t \) δεδομένης της πληροφορίας \(F_t \) (παρελθόντος) είναι νάλογη του \(h \) και \(\sigma^2(t, x) \) είναι η σταθερά αναλογίας.

3.4. Ολοκλήρωμα Ito
Έστω \(X_t \in L^2 \) μια απλή στοχαστική διαδικασία. Ορίζουμε το ολοκλήρωμα Ito ως εξής:

\[
\int_0^T X_t \, dW_t = \sum_{k=1}^N e_k (W_{t_k} - W_{t_{k-1}}) ,
\]

Ενώ για \(0 \leq a \leq b \leq T \) ορίζουμε

\[
\int_a^b X_t \, dW_t = \int X_t I_{(a,b)}(t) \, dW_t \quad \text{και} \quad \int_a^b X_t \, dW_t = 0
\]

όπου \(W_{t_k} - W_{t_{k-1}} \) η διαφορά των διαδοχικών χρονικών στιγμών. Αντί να πάρω ολοκλήρωμα παίρνω τις μεταβολές ως άθροισμα μεταφράζοντας το συνεχή χρόνο σε διακριτό με συγκεκριμένες χρονικές στιγμές. Ο λόγος που πολλαπλασιάζω με \(e_k \) είναι για να διορθώσω τυχόν παραλείψεις από όλες τις χρονικές στιγμές.

Σε περίπτωση που \(X_t, Y_t \in L^2 \) απλές στοχαστικές διαδικασίες και \(0 \leq a < b < c \) και \(c_1, c_2 \in R \) τότε ισχύουν οι παρακάτω ιδιότητες. Σε περίπτωση που δεν έχουμε απλές στοχαστικές διαδικασίες ικανοποιούνται οι ίδιες ιδιότητες οι οποίες προσεγγίζονται από εκείνες των απλών στοχαστικών διαδικασιών.

Ιδιότητες

i. Γραμμικότητα

\[
\int_0^t (c_1 X_s + c_2 Y_s) \, dW_s = c_1 \int_0^t X_s \, dW_s + c_2 \int_0^t Y_s \, dW_s
\]
ii. Προσθετικότητα

\[\int_a^c X_t \, dW_t = \int_a^b X_t \, dW_t + \int_b^c X_t \, dW_t \]

iii. Ισομετρία

\[E \left[\int_a^b X_s \, dW_s \int_a^b Y_s \, dW_s \mid F_a \right] = E \left[\int_a^b X_s Y_s d_s \mid F_a \right] \]

iv. Μηδενική μέση τιμή

\[E \left[\int_a^b X_t \, dW_t \mid F_a \right] = 0 \text{ και } E \left[\int_a^b X_t \, dW_t \int_b^c X_t \, dW_t \mid F_a \right] = 0 \]

v. Ιδιότητα martingale

\[E \left(\int_0^t X_r \, dW_r \mid F_s \right) = \int_0^s X_r \, dW_r \text{ και } \eta \]

\[Y_t = \int_0^t X_s \, dW_s \in \mathbb{M}_c^2, \text{ δηλαδή είναι συνεχείς martingale.} \]

3.5. Στοχαστικό Ανάπτυγμα Taylor (Formula Ito)

Μια στοχαστική διαδικασία \(X_t \) ονομάζεται διαδικασία Ito αν έχει την παρακάτω μορφή:

\[X_t = X_0 + \int_0^t a(s) \, ds + \int_0^t b(s) \, dW_s \]

όπου \(b(t) \in L^2, a(s) \in L^1 \) και \(X_0 \) είναι \(F_0 \) μετρήσιμη.

Η διαφορική μορφή μιας στοχαστικής διαδικασίας Ito είναι

\[dX_t = a(t) \, dt + b(t) \, dW_t \]

Και τη χρησιμοποιούμε μόνο συμβολικά και στην πραγματικότητα εννοούμε την ολοκληρωτική μορφή την οποία ορίσαμε παραπάνω.
Τώρα που ορίσαμε όλες τις παραπάνω έννοιες μπορούμε να αντιληφθούμε καλύτερα το στοχαστικό μέρος της εξίσωσης (Ito). Πρόκειται λοιπόν για μια στοχαστική ανέλιξη της κίνησης Brown της μορφής \(\sigma dB_t, t \geq 0 \) όπου \(\sigma > 0 \) το οποίο εξαρτάται από τα εκάστοτε ιδιαίτερα χαρακτηριστικά του φαινομένου. Οπότε αν η Κίνηση Brown \(\{ \sigma dB_t, t \geq 0 \} \) είναι η μεταβολή της θέσης ενός σωματιδίου που συγκρούεται με τα μόρια ενός υγρού μέσα στο οποίο βρίσκεται, τότε το \(\sigma \) εξαρτάται από την ακτίνα και τη μάζα του σωματιδίου, την ελαστικότητα του συγκεκριμένου υγρού κλπ. Αν το υγρό δεν είναι ομοιογενές τότε ο συντελεστής \(\sigma \) εξαρτάται και από τη θέση του σωματιδίου στο υγρό \(\sigma = \sigma(x) \). Επίσης αν το υγρό εκτελεί κινήσεις με ταχύτητα \(b(x) \) εξαρτώμενη επίσης από τη θέση \(x \) τότε θα πρέπει να προσδιορίσουμε ποιος είναι ο νόμος που διέπει την κίνηση του σωματιδίου. Για να μπορέσουμε λοιπόν να προσεγγίσουμε το νόμο αυτό οδηγούμαστε στους παρακάτω συλλογισμούς.

Κατά τη διάρκεια ενός πολύ μικρού χρονικού διαστήματος \([t, t + \Delta t]\) η μεταβολή της θέσης του σωματιδίου είναι \(X(t + \Delta t) - X(t) \). Η μεταβολή αυτή οφείλεται αφενός μεν στην κίνηση του υγρού με ταχύτητα \(b(X(t)) \), σταθερή στο χρονικό διάστημα \([t, t + \Delta t]\), και αφετέρου στην κίνηση Brown με συντελεστή \(\sigma(X(t)) \) επίσης σταθερό για το διάστημα \([t, t + \Delta t]\). Έτσι λοιπόν έχουμε:

\[
X(t + \Delta t) - X(t) = b(X(t))\Delta t + \sigma(X(t))(B_{t+\Delta t} - B_t)
\]

ή στη συνηθέστερη μορφή

\[
dX(t) = b(X(t))dt + \sigma(X(t))dB_t
\]

ενώ σε ολοκληρωτική μορφή

\[
X(s) = X(0) + \int_0^s b(X(t))dt + \int_0^s \sigma(X(t))dB_t
\]

Ας δούμε πως οι χημικές εξισώσεις του πρώτου κεφαλαίου μετατρέπονται σε στοχαστικές. Μια στοχαστική διαφορική εξίσωση σχηματίζεται μέσω του στοχαστικού ολοκληρώματος Ito και η λύση που
θα δώσει θα είναι ένα επαρκές πιθανοθεωρητικό μοντέλο του πειράματος το οποίο είναι γνωστό ως διάχυση. Επομένως για να έχει λύση μια στοχαστική διαφορική πρέπει να υπάρχει διαδικασία Ito X_t που να την ικανοποιεί.

3.6. Παραδείγματα μετατροπής και λύσης χημικών εξισώσεων σε στοχαστικές

1) $A \rightarrow B$

Η $\frac{d[A]}{dt} = -K[A]$ από απλή χημική εξίσωση με λύση $[A] = [A_0]e^{-kt}$ θα διαμορφωθεί σε στοχαστική διαφορική εξίσωση ως εξής:

$$d[A_t] = -k_1[A_t]dt + k_1[A_t]dW_t$$ \hspace{1cm} (1)

Όπου $-k_1[A_t]dt$ το αιτιοκρατικό μέρος και $k_1[A_t]dW_t$ το στοχαστικό (Ito) με $-k_1 \in R$

Λύση

Πρόκειται για μια γραμμική στοχαστική διαφορική εξίσωση μονοδιάστατη, της μορφής:

$$[A_t] = A_0 + \int_0^t -k_1[A_s]ds + \int_0^t k_1[A_s]dB_s$$ \hspace{1cm} (2)

Όπου $-k_1$, k_1 συναρτήσεις του s και $n = 1$ (διάστασης)

Για να μπορέσω να εφαρμόσω τη formula Ito πρέπει να εξετάσω αν ικανοποιούνται οι παρακάτω σχέσεις ώστε να εξασφαλίσω τη μοναδικότητα της λύσης:

$$\sup_{s \in [0,T]} (|-k_1(s)| + |k_1T(s)|) \leq M_T$$

$$k(s_1[A]) = -k_1(s)[A] \text{ και } kT(s_1[A]) = k_1T(s)[A]$$

$$\Rightarrow |k(s_1[A]) - k(s_1[B])| + |kT(s_1[A]) - kT(s_1[B])|$$

[25]
\[
\leq (|k_1(s)| + |kT(s)|) \, |[A] - [B]| \\
\]

Αφού λοιπόν για \(T > 0 \) υπάρχει \(M_T > 0 \) τέτοιο ώστε:

\[
\sup_{s \in [0,T]} (|k_1(s)| + |kT(s)|) \leq M_T
\]

ισχύει και επομένως σύμφωνα με την πρόταση:

\[
\begin{align*}
\text{d}[A_t] &= k(t_1[A_t])dt + kT(t_1[A_t])dB_t, [A_0] = \xi \\
\end{align*}
\]

Έχει μοναδική λύση στο \([0,T]\) για κάθε \(T > 0 \) και επομένως και στο \([0,\infty]\)

Για την επίλυση της (2) θέτω

\[
F_t = e^{-\gamma_t}, t \geq 0 \quad \text{όπου}
\]

\[
\gamma_t = \int_0^t \left(-k_1(s) + \frac{1}{2} k_1^2 T^2 \right) ds + \int_0^t k_1 T dB_s
\]

Σύμφωνα με τη formula Ito για τη στοχαστική ανέλιξη \(\{\gamma_t, t \geq 0\} \) και την \(f([A]) = e^{-[A]} \) έχουμε ότι

\[
F_t = 1 + \int_0^t [k_1(s) - k_1^2 T^2] F_s ds + \int_0^t (-k_1 T) F_s dB_s
\]
όπου όπως ορίσαμε και παραπάνω:

\[F_t[A_t] = A_0 + \int_0^t (k_1(s) - k_1^2T^2(s)F_s[A_s] + (k_1(s)[A_s] \\
- k_1 T[A_s])) ds + \int_0^t -k_1 T(s)[A_s] + k_1 T(s)F_s[A_s]) dB_s \]

\[\Rightarrow [A_t] = e^{Y_t}([A_0] + \int_0^t -k_1[A_s] ds + \int_0^t k_1 T[A_s] dB_s \]

Όπου όπως ορίσαμε και παραπάνω:

\[Y_t = \int_0^t (-k_1(s) - \frac{1}{2} k_1^2 T^2(s)) ds + \int_0^t k_1 T(s) dB_s \]

Άρα η μοναδική λύση είναι

\[[A_t] = [A_0]e^{(k_1 - \frac{1}{2} k_1^2 T^2)t + k_1 TB_t} , t \geq 0 \quad (3) \]

Η στοχαστική ανέλιξη \([A_t], t \geq 0\) που ορίζεται από τη σχέση (3) ονομάζεται γεωμετρική κίνηση Brown.

2) \(2A \rightarrow B\)

Η \(\frac{d[A]}{dt} = -k_2[A]^2\) από απλή χημική διαφορική εξίσωση με λύση

\[[A] = \frac{1}{k_t + A_0} \quad \text{θα διαμορφωθεί σε στοχαστική διαφορική εξίσωση ως εξής:} \]

\[d[A_t] = -k_2[A_t]^2 d_t + k_2 T[A_t]^2 dW_t \quad (4) \]
Με \(-k_2[A_t]^2 d_t\) το αιτιοκρατικό μέρος και \(k_2 T[A_t]^2 dW_t\) το στοχαστικό

Λύση

Η παραπάνω στοχαστική διαφορική εξίσωση είναι μη γραμμική επομένως δε μπορώ να προχωρήσω στην επίλυσή της με τη μεθοδολογία που ακολούθησα στην (1). Η σ.δ.ε (4) είναι της μορφής:

\[dA_t = b(A_t)d_t + \sigma(A_t)dB_t , A_0 = \xi \quad (5) \]

Όπου οι συναρτήσεις \(b\) και \(\sigma\) ικανοποιούν τις εξής συνθήκες:

\[b \in C^1(R) , \quad \sigma \in C^2(R) \quad \text{kai} \quad \sigma(x) > 0 \quad \text{για κάθε} \quad x \in R \]

\[C^1(R) \quad \rightarrow \quad \text{είναι ο γραμμικός χώρος των συνεχών στο ανοικτό} \; R \; \text{πραγματικών συναρτήσεων με συνεχείς μέχρι την πρώτη παράγωγο} \]

\[C^2(R) \quad \rightarrow \quad \text{είναι ο γραμμικός χώρος των συνεχών στο ανοικτό} \; R \; \text{πραγματικών συναρτήσεων με συνεχείς μέχρι τη δεύτερη παράγωγο} \]

Θέτω \(g(x) = \int_0^x \frac{1}{\sigma(y)} \; dy\) και εφαρμόζω τη formula Ito στην \(Y_t = g(A_t)\) όπως στην (1) και θα καταλήξω στην:

\[Y_t = \int_0^t h(g^{-1}(Y_s))ds + B_t \quad (6) \]

Όπου \(h = \frac{b}{\sigma} - \frac{1}{2}\sigma'\)

Τώρα η \(Y_t\) είναι επιλύσματος συνάρτηση. Αφού η (6) επιλύεται και δίνει λύση \(Y_t\) τότε θα έχει λύση και η

\[dA_t = b(A_t)d_t + \sigma(A_t)dB_t , A_0 = \xi \]

[28]
Και μάλιστα μοναδική αφού $b \in C^1$ και $\sigma \in C^2$. Αυτό εξασφαλίζεται από την εφαρμογή του θεωρήματος μέσης τιμής του διαφορικού λογισμού σύμφωνα με τον οποίο:

Για $n \in N \ni K_n > 0$ τ. ω. να ισχύει:

$$|b(x) - b(y)| + |\sigma(x) - \sigma(y)| \leq K_n |x - y|$$

Για όλα τα $|x| \leq n \text{ και } |y| \leq n$

Αρα η μοναδική λύση της (4) θα είναι:

$$[A_t] = g^{-1}(Y_t)$$

3) $A+B \to C$

$\frac{d[A]}{dt} = -k[A][B]$ από απλή χημική διαφορική εξίσωση με λύση

$$[A] = e^{-k_2[B_t]+[A_0]} \text{ θα διαμορφωθεί σε στοχαστική διαφορική εξίσωση ως εξής:}$$

$$d[A_t] = -k_2[A_t][B_t]dt + k_2T[A_t][B_t]dW_t \quad (7)$$

Όπου $-k_2[A_t][B_t]dt$ το αιτιοκρατικό μέρος και $k_2T[A_t][B_t]dW_t$ το στοχαστικό (Ito) με $-k_2 \in \mathbb{R}$ και $T > 0$

Λύση

Η παραπάνω στοχαστική διαφορική εξίσωση είναι μη γραμμική επομένως δε μπορώ να προχωρήσω στην επίλυσή της με τη μεθοδολογία που ακολούθησα στην (1). Η σ.δ.ε (7) είναι ιδίας μορφής με την (4). Επομένως ικανοποιούνται και οι αντίστοιχες συνθήκες και η μοναδική λύση που θα δώσει θα είναι επίσης της μορφής:

$$[A_t] = g^{-1}(Y_t)$$

[29]
με \(Y_t = \int_0^t h(g^{-1}(Y_s))d_s + B_t \) και \(h = \frac{b}{\sigma} - \frac{1}{2}\sigma' \)

4) \(\alpha A + \beta B \rightleftharpoons cC + dD \)

Η συγκεκριμένη χημική αντίδραση περιγράφει όπως αναφέραμε και στο 2ο κεφάλαιο τη συνθήκη χημικής ισορροπίας.

\[K_f [A]^a[B]^b \rightleftharpoons K_r [C]^c[D]^d \]

με σταθερά ισορροπίας:

\[K_{eq} = \frac{K_f}{K_r} = \frac{[C]^c[D]^d}{[A]^a[B]^b} \]

Η μετατροπή της σε στοχαστική θα δώσει μια πολυδιάστατη στοχαστική διαφορική εξίσωση.

3.7. Περιγραφή προβλήματος γνήσιας διάχυσης

Ας δούμε τώρα πως είναι ένα στατιστικό πρόβλημα μιας γνήσιας διαταραχής χρησιμοποιώντας ένα παράδειγμα με το φάρμακο και το υγρό.

Στο σχήμα βλέπουμε τα μόρια ως ένα διακριτό τυχαίο περίπατο σε μία διάσταση. Έχουμε δύο σταθερές, τη σταθερά χώρου \(dx = \alpha \) και τη σταθερά χρόνου \(dt = t \).
Ας υποθέσουμε ότι ένα φάρμακο εισέρχεται στον οργανισμό και ξεκινάει από το \(x = 0 \) σε χρόνο \(t=0 \). Κάθε μεταβολή του χρόνου \(dt=t \) το μόριο μετατοπίζεται στο χώρο (στον οργανισμό) λόγω τυχαίων διαταραχών, δηλαδή λόγω κίνησης Brown, κατά μία θέση είτε αριστερά είτε δεξιά με πιθανότητα \(\theta \) και για τις 2 περιπτώσεις και μάλιστα \(p=0,5 \) όπως φαίνεται και από το σχήμα. Οι διαταραχές αυτές παραβιάζουν το νόμο της ισορροπίας που είδαμε στο 2\(^{ο}\) κεφάλαιο και δημιουργούν τις παραπάνω μετατοπίσεις τις οποίες και θέλω να προσεγγίσω/εκτιμήσω τμηματικά.

4. Μοντέλα κινδύνου και στοχαστικές διαφορικές εξισώσεις με άλματα στη χημική κινητική (φαρμακοληψία)

Στο κεφάλαιο αυτό θα μελετήσουμε τη χορήγηση του φαρμάκου, ως σύνθεση Poisson (Compound Poisson), η οποία θα εξαρτάται από το χρόνο δράσης του στον οργανισμό. Για να κάνουμε τις απαραίτητες προβλέψεις θα χρησιμοποιήσουμε μοντέλα Διάχυσης-Άλματος (jump-diffusion). Τα μοντέλα αυτά χρησιμεύουν σε διάφορους επιστημονικούς κλάδους. Στον κλάδο της φαρμακοκινητικής θα τα εισάγουμε για την καλύτερη πρόβλεψη της μεταβολής των χημικών ουσιών σε συνάρτηση με το χρόνο. Στην πραγματικότητα αυτό που θέλουμε να κάνουμε είναι μια πρόβλεψη παραγώγων που δείχνουν τη μεταβολή της ουσίας από τη στιγμή που εισέρχεται στον οργανισμό με νεωμετρική κίνηση Brown όπως αυτό μελετήθηκε στο προηγούμενο κεφάλαιο αλλά με μεγαλύτερη αξιοπιστία.

Κάνοντας εμπειρικές μελέτες και εφαρμογές είναι αντιληπτό ότι το αποτέλεσμα δεν είναι επαρκές γιατί λαμβάνει υπόψη μία παράμετρο που επηρεάζει τη μεταβολή των μορίων των χημικών ουσιών, το χρόνο, ενώ στην πραγματικότητα υπάρχουν κι άλλες παράμετροι που συντελούν σε αυτή όπως για παράδειγμα η θερμοκρασία ,το περιβάλλον δηλαδή στο οποίο γίνονται οι χημικές διεργασίες. Έχουμε λοιπόν δύο καταστάσεις, η πρώτη αναμενόμενη είναι αυτή κατά την οποία οι μεταβολές εξαρτώνται από το χρόνο και η δεύτερη όπου οι μεταβολές επηρεάζονται από τη θερμοκρασία. Οι παράγοντες αυτοί
προκαλούν μικρές μεταβολές στα μόρια των ουσιών και προσομοιώνονται επαρκώς με τη γεωμετρική κίνηση Brown. Όμως υπάρχουν κι άλλοι παράγοντες οι οποίοι μπορεί να προκαλέσουν απότομες μεταβολές όπως η φυσική κατάσταση της χημικής ουσίας, η πίεση η οποία επηρεάζει αρκετά τη θερμοκρασία και οι καταλύτες οι οποίοι επηρεάζουν τη ταχύτητα μιας χημικής αντίδρασης. Οι παράγοντες αυτοί δε μπορούν να προσομοιωθούν με κίνηση Brown.

4.1. Μοντέλα jump-diffusion (Άλματα-διάχυσης)
Για την ενσωμάτωση όλων αυτών των απότομων μεταβολών εισάγουμε τα μοντέλα jump-diffusion, τα οποία αποτελούνται από δύο μέρη. Το πρώτο μέρος αφορά τη διάχυση και περιγράφει τις προβλεπόμενες μεταβολές που όπως έχουμε αναφέρει εξαρτώνται από το χρόνο και εκτιμώνται με τη βοήθεια των στοχαστικών ανελίξεων (γεωμετρική κίνηση Brown), με σταθερό μέσο και μεταβλητότητα σε συνεχή χρόνο, όπως αυτές μελετήθηκαν και στο προηγούμενο κεφάλαιο. Το δεύτερο μέρος αφορά τα άλματα τα οποία λαμβάνουν υπόψη τις πιθανές αλλαγές λόγω καινούριων δεδομένων που μπορούν να επηρεάσουν τη μεταβολή των ουσιών και τα οποία θα περιγράψουμε με την ανέλιξη Poisson.

4.2. Ανέλιξη Poisson
Η ανέλιξη Poisson είναι μια στοχαστική διαδικασία η οποία μετράει τον αριθμό κάστων γεγονότων και τις χρονικές στιγμές που αυτά συμβαίνουν σε ένα χρονικό διάστημα με κύρια χαρακτηριστικά:

- Ο χρόνος που μεσολαβεί ανάμεσα σε δύο γεγονότα ακολουθεί εκθετική κατανομή με παράμετρο λ.
- Τα χρονικά διαστήματα ανάμεσα στα γεγονότα είναι ανεξάρτητα μεταξύ τους.
Έστω για παράδειγμα ότι θέλουμε να υπολογίσουμε τη συχνότητα χορήγησης ενός φαρμάκου που διαχέεται στον οργανισμό σε συγκεκριμένο χρόνο. Το χρονικό διάστημα ανάμεσα σε δύο λήψεις φαρμάκων είναι εκθετικά κατανεμημένο και ανεξάρτητο από τα προηγούμενα διαστήματα ενώ αν είχαμε σταθερά χρονικά διαστήματα η δράση των φαρμάκων θα ήταν εκθετικά κατανεμημένη και ανεξάρτητη από τη δράση στα προηγούμενα χρονικά διαστήματα. Σε κάθε χρονική στιγμή δρα το πολύ μία μονάδα δόσης φαρμάκου και επομένως για κάθε χρονική στιγμή τ ο αριθμός των δόσεων των φαρμάκων που δουν εκφράζεται από την εξίσωση:

$$N_t = \sum_{n \geq 1} 1_{t \geq \tau_n}$$

Ο όρος N_t ακολουθεί τη διαδικασία Poisson και η εξίσωση που δίνει την πιθανότητα να έχουν δράσει τα φάρμακα τη χρονική στιγμή t είναι

$$P[N_t = n] = \frac{e^{-\lambda t} (\lambda t)^n}{n!}$$

Μαθηματικός ορισμός και ιδιότητες

Μια διαδικασία που ορίζεται στους θετικούς ακέραιους αριθμούς $N = \{N_t: t \geq 0\}$ και ορίζεται σε ένα χώρο πιθανότητας (Ω, F, P), λέγεται ότι είναι μια διαδικασία Poisson με ρυθμό $\lambda > 0$ αν ισχύουν τα ακόλουθα:

a) Οι διαδρομές του N είναι P-σχεδόν σίγουρα σωστά συνεχείς με τα αριστερά όρια

b) $P(N_0 = 0) = 1$

c) Για $0 \leq s \leq t$, $N_t - N_s$ ισούται με την κατανομή N_{t-s}

d) Για $0 \leq s \leq t$, $N_t - N_s$ είναι ανεξάρτητο από το $\{N_u: u \leq s\}$

[33]
e) Για κάθε \(t > 0 \), \(N_t \) ισούται με την κατανομή μιας Poisson τυχαίας μεταβλητής με παράμετρο \(\lambda t \)

Επειδή όμως κατά τη λήψη ενός φαρμάκου το ύψος μεταβολών δεν είναι αναγκαία σταθερό θα χρησιμοποιήσουμε μια γενικευμένη της Poisson, τη σύνθετη Poisson όπου το μέγεθος του άλματος είναι αυθαίρετο και η διαφορά της επόμενης με την προηγούμενη λήψη και δράση φαρμάκου σε σταθερά χρονικά διαστήματα παραμένει εκθετικά κατανεμημένη.

4.3. Σύνθετη ανέλιξη Poisson

Έστω ότι έχουμε κάποια συμβάντα μιας ανέλιξης Poisson που εμφανίζονται στους χρόνους \(t_1, t_2, \ldots \) στα οποία αντιστοιχούν κάποιες ανεξάρτητες τυχαίες μεταβλητές \(Y_1, Y_2, \ldots \). Στη δική μας περίπτωση τα συμβάντα είναι η δράση των φαρμάκων στους χρόνους \(t_1, t_2, \ldots \) και \(Y_i \) τα ύψη των χορηγούμενων θεραπευτικών συγκεντρώσεων στους αντιστοιχους χρόνους του ι φαρμάκου. Στην περίπτωση αυτή μας ενδιαφέρει η στοχαστική ανέλιξη:

\[
M_t = Y_1 + Y_2 + \cdots + Y_{N(t)}, \quad t \geq 0
\]

Όπου \(M_t \) εκφράζει τη συνολική θεραπευτική συγκέντρωση μέχρι το χρόνο \(t \) και \(Y_i \) που αντιστοιχούν σε εμφανίσεις συμβάντων μέχρι και το χρόνο \(t \) και \(N(t) \) είναι τυχαίο και ανεξάρτητο από τα \(Y_i \) γιατί αντιστοιχεί στα έκτακτα περιστατικά από την τακτική θεραπευτική αγωγή.

με \(M(t)=0 \) αν \(N(t)=0 \), όπου \(M(t) \) εκφράζει το άθροισμα των χορηγούμενων φαρμάκων ύστερα και το χρόνο \(t \). Η διαδικασία αυτή ονομάζεται σύνθετη διαδικασία Poisson \((\lambda, F)\) και οι τυχαίες μεταβλητές \(Y_1, Y_2, \ldots \) θεωρούνται ανεξάρτητες και ίσονομες τυχαίες μεταβλητές, ανεξάρτητες και από την \(\{N(t), t \geq 0\} \) οι οποίες ακολουθούν μια κατανομή \(F \) τ.ω.
όπου είναι συνάρτηση κατανομής του αθροίσματος των τυχαίων
μεταβλητών \(Y_1 + Y_2 + \cdots + Y_K \). Σημειώνεται ότι \(N(t) \) είναι τυχαίο και
ανεξάρτητο από τα \(Y_i \) γιατί αντιστοιχεί στα έκτακτα περιστατικά από την
tακτική θεραπευτική αγωγή.

Άρα η παραπάνω εξίσωση της ανέλιξης Poisson για κάθε μεταβολή σε
χρονική στιγμή \(t \) γίνεται:

\[
P(X(t) \leq x) = P\left(\sum_{i=1}^{N(t)} Y_i \leq x \right) = \sum_{k=0}^{\infty} P\left(\sum_{i=1}^{N(t)} Y_i \leq x \mid N(t) = k \right)
\]

\[
P(N(t) = \kappa) = \sum_{k=0}^{\infty} P\left(\sum_{i=1}^{N(t)} Y_i \leq x \right) e^{-\lambda t} \frac{(\lambda t)^\kappa}{\kappa!} = \sum_{k=0}^{\infty} F^{(\kappa)}(x) e^{-\lambda t} \frac{(\lambda t)^\kappa}{\kappa!}
\]

όπου \(F^{(\kappa)} \) είναι συνάρτηση κατανομής του αθροίσματος των τυχαίων
μεταβλητών \(Y_1 + Y_2 + \cdots + Y_K \). Σημειώνεται ότι \(N(t) \) είναι τυχαίο και
ανεξάρτητο από τα \(Y_i \) γιατί αντιστοιχεί στα έκτακτα περιστατικά από την
tακτική θεραπευτική αγωγή.

Άρα η παραπάνω εξίσωση της ανέλιξης Poisson για κάθε μεταβολή σε
χρονική στιγμή \(t \) γίνεται:

\[
X_t = \sum_{i=1}^{N_t} Y_i
\]

όπου \(X_t \) το άθροισμα των μεταβολών éως τη χρονική στιγμή \(t \) και \(Y_t \) το
ύψος της μεταβολής τη χρονική στιγμή \(i \).

Στο σημείο αυτό πρέπει να θυμηθούμε και να ορίσουμε αναλυτικά την
κίνηση Brown ώστε να μπορέσουμε μετά να εισάγουμε μια καινούρια
έννοια, τις διαδικασίες Levy (Levy processes), οι οποίες ορίζονται από
tις κοινές ιδιότητες τους.
4.4. Κίνηση Brown για Levy ανελίξεις

Η πραγματική αξία μιας διαδικασίας \(\{B_t: t \geq 0\} \) ορίζεται σε ένα χώρο πιθανότητας \((\Omega, F, P)\) και λέμε ότι είναι κίνηση Brown αν ισχύουν τα ακόλουθα:

a) Οι διαδρομές του Β είναι σχεδόν σίγουρα συνεχείς
b) \(P(B_0 = 0) = 1 \)
c) Για \(0 \leq s \leq t \), \(B_t - B_s \) ισούται με την κατανομή \(B_{t-s} \)
d) Για \(0 \leq s \leq t \), \(B_t - B_s \) είναι ανεξάρτητο από το \(\{B_u: u \leq s\} \)
e) Για κάθε \(t > 0 \), \(B_t \) ισούται με την κατανομή σε μια κανονική τυχαία μεταβλητή με διακύμανση \(t \)

Σύμφωνα με τους δύο ορισμούς βλέπουμε ότι οι δύο αυτές διαδικασίες έχουν σημαντικές διαφορές αλλά και πολλές ομοιότητες. Αρχικά η κίνηση Brown βλέπουμε ότι έχει συνεχείς διαδρομές ενώ η Poisson όχι. Η διαδικασία Poisson είναι μία μη φθίνουσα διαδικασία και έτσι οι μεταβολές της είναι ορισθετιμένες σε πεπερασμένους χρονικούς χρόνον μεταβλητές σε αντίθεση με την κίνηση Brown που δεν έχει μονότονα μονοπάτια και οι διαδρομές είναι απεριόριστης διακύμανσης σε σχέση με τους πεπερασμένους χρονικούς χρόνος.

Βλέποντας όμως τις ιδιότητες που τις ορίζουν διακρίνουμε αρκετά κοινά. Και οι δύο έχουν σωστά συνεχείς διαδρομές με αριστερά όρια και σταθερές και ανεξάρτητες προσαυξήσεις κάτι το οποίο σημαίνει ότι έχουν κοινές τις 4 πρώτες ιδιότητες. Χρησιμοποιώντας τις κοινές τους αυτές ιδιότητες μπορούμε να ορίσουμε μια γενική κλάση διστημικών διαδικασιών που ονομάζονται διαδικασίες Levy.

Η μεταβολή της ουσίας στον οργανισμό (διάχυση) περιγράφεται όπως έχουμε ήδη αναφέρει με τις ανελίξεις Brown και Poisson οι οποίες εντάσσονται στην Levy ανελίξηι καθώς διαθέτουν ανεξάρτητες και ισόνομες προσαυξήσεις. Όλες οι ανελίξεις με ανεξάρτητες και ισόνομες προσαυξήσεις λέγονται ανελίξεις Levy. Στη γεωμετρική κίνηση Brown όπως και στη σύνθετη Poisson η μεταβολή της χημικής ουσίας μια χρονική στιγμή είναι ανεξάρτητη από τη μεταβολή της την προηγούμενη χρονική στιγμή και τα χρονικά διαστήματα είναι σταθερά.
4.5. Διαδικασίες Levy
Μια διαδικασία $X = \{X_t : t \geq 0\}$ που ορίζεται σε ένα χώρο πιθανοτήτων (Ω, \mathcal{F}, P) λέγεται ότι είναι μια διαδικασία Levy αν ικανοποιεί τις ακόλουθες ιδιότητες:

a) Οι διαδρομές του X είναι P-σχεδόν σίγουρα σωστά συνεχείς με αριστερά όρια
b) $P(X_0 = 0) = 1$

c) Για το $0 \leq s \leq t$ τα $X_t - X_s$ είναι ίσα με την κατανομή X_{t-s}
d) Για $0 \leq s \leq t$ τα $X_t - X_s$ είναι ανεξάρτητα από το $\{X_u : u \leq s\}$

Μόνο από τον ορισμό που δώσαμε είναι δύσκολο να δούμε πόσο πλούσιο είναι ο κλάδος των διαδικασιών Levy. Αυτό που δείχνει πόσο ποικίλουν οι μορφές που μπορεί να πάρει μια τέτοια διαδικασία είναι η σχέση με την έννοια της απειρώς διαιρέσιμης κατανομής, την οποία και θα ορίσουμε αμέσως μετά. Επιπλέον από δώ και στο εξής όταν μιλάμε για διαδικασία Levy θα χρησιμοποιούμε πάντα το μέτρο P.

4.6. Απειρώς διαιρέσιμη κατανομή
Μια κατανομή πιθανότητας διαιρείται άπειρα αν μπορεί να εκφραστεί ως κατανομή πιθανότητας του αθροίσματος ενός ανυπάρκτου αριθμού με ανεξάρτητες και ισόνομες τυχαίες μεταβλητές. Η χαρακτηριστική συνάρτηση οποιασδήποτε απειρώς διαιρέσιμης κατανομής βρίσκεται στο χαρακτηριστικό της εκθέτη όπως θα δούμε αναλυτικότερα και παρακάτω. Πιο αυστηρά θα λέμε ότι μια πραγματική τυχαία μεταβλητή Θ έχει απειρώς διαιρέσιμη κατανομή αν για κάθε $n = 1,2,...$ υπάρχει μια ακολουθία με ανεξάρτητες και ισόνομες τυχαίες μεταβλητές $\Theta_{1,n}, \Theta_{2,n}, ..., \Theta_{n,n}$ τέτοιες ώστε:

$$d\Theta = \Theta_{1,n} + \Theta_{2,n} + \cdots + \Theta_{n,n}$$

όπου Θ ισότητα κατά κατανομή. Διαφορετικά θα μπορούσαμε να εκφράσουμε αυτή τη σχέση όσον αφορά τους νόμους περί πιθανοτήτων.
Έστω μ ο νόμος μιας πραγματικής αξίας τυχαίας μεταβλητής είναι
απείρως διαιρέσιμη αν για κάθε $n = 1, 2, \ldots$ υπάρχει ένας άλλος νόμος
μ_n από μία πραγματικής αξίας τυχαία μεταβλητή τέτοια ώστε $\mu = \mu_n^*$, όπου μ_n^* υποδηλώνει τη n-πτυχή της ανέλιξης μ_n.

Λαμβάνοντας υπόψη τον παραπάνω ορισμό, ένας τυχαίος τρόπος για να διαπιστώσουμε αν μια δοσμένη τυχαία μεταβλητή έχει μια απείρως διαιρέσιμη κατανομή είναι μέσω του χαρακτηριστικού της εκθέτη. Ας υποθέσουμε ότι Θ έχει χαρακτηριστικό εκθέτη

$$\Psi(u) := -\log E(e^{iu\theta})$$

για όλα τα $u \in R$. Επίσης Θ έχει μια απείρως διαιρέσιμη κατανομή αν για όλα τα $n \geq 1$ υπάρχει ένας χαρακτηριστικός εκθέτης μιας κατανομής πιθανοτήτων, π.χ. Ψ_n τέτοιο ώστε:

$$\Psi(u) = n\Psi_n(u)$$

για όλα τα $u \in R$.

Ο πλήρης βαθμός στον οποίο μπορούμε να χαρακτηρίσουμε αυτές τις κατανομές περιγράφεται από τον χαρακτηριστικό εκθέτη Ψ και μια γνωστή έκφρασή του είναι η Levy-khintchine formula.

4.7. Levy-khintchine formula

Ένας νόμος πιθανότητας μ μιας πραγματικής αξίας τυχαίας μεταβλητής είναι απείρως διαιρέσιμη με τον χαρακτηριστικό εκθέτη Ψ

$$\int_{\mathbb{R}} e^{i\theta x} \mu(dx) = e^{-\Psi(\theta)} \quad \text{για} \quad \theta \in \mathbb{R}$$

αν και μόνο αν υπάρχει μια τριάδα (α, σ, Π) όπου $\alpha \in \mathbb{R}$, $\sigma \geq 0$ και Π είναι ένα μέτρο συγκέντρωσης στο $\mathbb{R}/\{0\}$ που ικανοποιεί $\int_{\mathbb{R}} (1+\lambda x^2) \Pi(dx) < \infty$ τ.ω.:
Το μέτρο Π ονομάζεται χαρακτηριστικό μέτρο Levy. Η απόδειξη του παραπάνω ορισμού είναι αρκετά μακροσκελής και επιλέγουμε να την αποκλείσουμε.

Ας δούμε όμως λεπτομερώς τη σχέση μεταξύ απείρως διαιρέσιμων κατανομών και διαδικασιών με σταθερές και ανεξάρτητες προσαυξήσεις. Από τον ορισμό της διαδικασίας Levy βλέπουμε ότι για κάθε \(t > 0 \), \(X_t \) είναι τυχαία μεταβλητή που ανήκει στη διαδικασία των απείρως διαιρέσιμων κατανομών. Αυτό προκύπτει από το γεγονός ότι για κάθε \(n = 1, 2, \ldots \)

\[
X_t = X_{t/n} + (X_{2t/n} - X_{t/n}) + \cdots + (X_t - X_{(n-1)t/n}) \tag{1}
\]

μαζί με το γεγονός ότι το \(X \) έχει σταθερές και ανεξάρτητες προσαυξήσεις. Υποθέτουμε τώρα ότι ορίζεται για όλα τα \(\theta \in \mathbb{R}, t \geq 0 \),

\[
\Psi_t(\theta) = -\log E(e^{i\theta X_t})
\]

tότε χρησιμοποιώντας την (1) δύο φορές έχουμε για κάθε δύο θετικούς ακέραιους \(m, n \) ότι

\[
m\Psi_1(\theta) = \Psi_m(\theta) = m\Psi_{m/n}(\theta)
\]

και επομένως για κάθε λογικό \(t > 0 \),

\[
\Psi_t(\theta) = t\Psi_1(\theta) \tag{2}
\]

Συνεπώς οποιαδήποτε διαδικασία Levy έχει την ιδιότητα αυτή για όλα τα \(t \geq 0 \),

\[
E(e^{i\theta X_t}) = e^{-t\Psi(\theta)}
\]

Όπου \(\Psi(\theta) := \Psi_1(\theta) \) είναι ο χαρακτηριστικός εκθέτης του \(X_1 \) ο οποίος έχει μια απείρως διαιρέσιμη κατανομή \(\Psi(\theta) \) ως χαρακτηριστικός εκθέτης της διαδικασίας Levy.

Είναι πλέον σαφές ότι κάθε διαδικασία Levy μπορεί να συσχετιστεί με μία απείρως διαιρέσιμη κατανομή. Αυτό που δεν είναι σαφές είναι αν δίνεται μια απείρως διαιρέσιμη κατανομή αν μπορεί κανείς να
κατασκευάζει μια διαδικασία Levy \(X\), έτσι ώστε το \(X_1\) να έχει αυτή την κατανομή. Αυτό το ζήτημα θα επιβεβαιωθεί από το ακόλουθο θεώρημα που δίνει ο τύπος Levy – khintchine για τις διαδικασίες Levy.

4.8. Levy-khintchine formula για Levy διαδικασίες

Υποθέτω ότι \(\alpha \in \mathbb{R}\), \(\sigma \geq 0\) και \(\Pi\) είναι ένα μέτρο συγκέντρωσης στο \(\mathbb{R}/\{0\}\) τ. ω.:

\[
\int_\mathbb{R} (1+\lambda x^2)\Pi(dx) < \infty
\]

Από τον τριπλό ορισμό για κάθε \(\theta \in \mathbb{R}\),

\[
\Psi(\theta) = i\alpha \theta + \frac{1}{2}\sigma^2 \theta^2 + \int_\mathbb{R} (1 - e^{i\theta x} + i\theta x l(\{x|<1\}))\Pi(dx)
\]

Στη συνέχεια υπάρχει ένας χώρος πιθανότητας \((\Omega, F, P)\) στον οποίο είναι μια διαδικασία Levy που έχει τον χαρακτηριστικό εκθέτη Ψ.

4.9. Παραδείγματα διαδικασιών Levy

Πριν προχωρήσουμε σε βαθύτερες έννοιες και μεθόδους ώστε να καταφέρουμε να προβλέψουμε, με όσο περισσότερη ακρίβεια γίνεται, τη μεταβολή των χημικών ουσιών μέσω των τριών χημικών εξισώσεων που έχουμε εισάγει στη συγκεκριμένη εργασία ας δούμε κάποια παραδείγματα ως εφαρμογές των διαδικασιών Levy με τη χρήση της Levy-khintchine formula που ορίσαμε παραπάνω για Poisson διαδικασίες και σύνθετες Poisson διαδικασίες.

1) Poisson διαδικασίες

Για κάθε \(\lambda > 0\) εξετάζουμε μια πιθανότητα κατανομής \(\mu_\lambda\) η οποία συγκέντρωνεται στο \(\kappa = 0,1,2, \ldots\) τ. ω.:

\[
\mu_\lambda(\{\kappa\}) = e^{-\lambda} \frac{\lambda^\kappa}{\kappa!}
\]

[40]
δηλαδή μια Poisson κατανομή. Ένας εύκολος υπολογισμός προκύπτει από:

\[\sum_{k \geq 0} e^{i\theta k} \mu(\{k\}) = e^{-\lambda(1-e^{i\theta})} = \frac{\lambda}{n(1-e^{i\theta})} \]

Η δεξιά πλευρά είναι η χαρακτηριστική συνάρτηση του συνόλου των \(n \) ανεξάρτητων διαδικασιών Poisson, κάθε μία από τις οποίες έχει παράμετρο \(\frac{\lambda}{n} \). Στο Levy – khintchine βλέπουμε ότι χωρίζεται σε \(\alpha = \sigma = 0 \) και \(\Pi = \lambda \delta_1 \), το μέτρο Dirac που υποστηρίζεται από το \{1\}.

Υπενθυμίζεται ότι μια διαδικασία Poisson \(\{N_t: n \geq 0\} \) είναι μια διαδικασία Levy με κατανομή σε συνάρτηση με το χρόνο \(t > 0 \), η οποία είναι Poisson με παράμετρο \(\lambda t \). Από τους παραπάνω υπολογισμούς έχουμε:

\[E\left(e^{i\theta N_t}\right) = e^{-\lambda t(1-e^{i\theta})} \]

και επομένως ο χαρακτηριστικός εκθέτης του δίνεται από το \(\Psi(\theta) = \lambda(1 - e^{i\theta}) \) για \(\theta \in R \).

2) Σύνθετη Poisson διαδικασία

Ας υποθέσουμε ότι το \(N \) είναι μια τυχαία μεταβλητή Poisson με παράμετρο \(\lambda > 0 \) και ότι \(\{Y_i: i \geq 1\} \) είναι μια ανεξάρτητη και ισόνομη ακολουθία τυχαίων μεταβλητών (ανεξάρτητη από το \(N \)) με κοινό νόμο \(F \) χωρίς κανένα στοιχείο στο μηδέν. Ισχύει για \(\theta \in R \) ότι:

\[
E\left(e^{i\theta} \sum_{i=1}^{n} Y_i\right) = \sum_{n \geq 0} E\left(e^{i\theta} \sum_{i=1}^{n} Y_i\right) e^{-\lambda} \frac{\lambda^n}{n!} = \sum_{n \geq 0} \left(\int_R e^{i\theta x} F(dx) \right)^n e^{-\lambda} \frac{\lambda^n}{n!} \\
= e^{-\lambda} \int_R \left(1 - e^{i\theta x}\right) F(dx)
\]
Από την παραπάνω σχέση βλέπουμε ότι οι κατανομές της μορφής
\[\sum_{i=1}^{N} Y_i \] είναι απείρως διαιρέσιμες με τριάδα \(\alpha = -\lambda \int_{0<|x|<1} x F(d_x) \), \(\sigma = 0 \) και \(\Pi(d_x) = \lambda F(d_x) \). Όταν το \(F \) έχει ένα άτομο μονάδας μάζας στο 1 τότε έχουμε απλά μια κατανομή Poisson. Ας υποθέσουμε τώρα ότι \(\{N_t: t \geq 0\} \) είναι μια διαδικασία Poisson με ρυθμό \(\lambda \) και θεωρούμε μια σύνθετη διαδικασία Poisson \(\{X_t: t \geq 0\} \) που ορίζεται από

\[X_t = \sum_{i=0}^{N_t} Y_i \quad , t \geq 0 \]

χρησιμοποιώντας το γεγονός ότι το \(N \) έχει ανεξάρτητες αυξήσεις σε συνδυασμό με την ανεξαρτησία των τυχαίων μεταβλητών \(\{Y_i: i \geq 1\} \) για \(0 \leq s < t < \infty \) έχουμε:

\[X_t = X_s + \sum_{i=N_t+1}^{N_t} Y_i \]

είναι σαφές ότι το \(X_t \) είναι το άθροισμα των \(X_s \) και \(N \) ανεξάρτητο αντίγραφο των \(X_{t-s} \).

Η σωστή συνέχεια και τα αριστερά όρια της διαδικασίας \(N \) διασφαλίζουν επίσης τη σωστή συνέχεια και τα αριστερά όρια της \(X \). Έτσι οι σύνθετες διαδικασίες Poisson είναι διαδικασίες Levy. Από υπολογισμούς που κάναμε παραπάνω, για κάθε \(t \geq 0 \) μπορούμε να υποκαταστήσουμε όπου \(N \) την τυχαία μεταβλητή \(N_t \) για να δούμε ότι η φόρμουλα Levy – khintchine για μία σύνθετη διαδικασία Poisson παίρνει τη μορφή:

\[\psi(\theta) = \lambda \int_{R} (1 - e^{i\theta x}) F(d_x) \]

Σημειώνεται ειδικότερα ότι το μέτρο Levy μιας σύνθετης Poisson διαδικασίας είναι πάντα πεπερασμένο με συνολική μάζα ίση με το ρυθμό \(\lambda \) της υποκείμενης διαδικασίας \(N \). Οι σύνθετες διαδικασίες Poisson συνδέουν άμεσα τις διαδικασίες Levy με τους τυχαίους περιπάτους, δηλαδή διαδικασίες διακριτού χρόνου της μορφής:

\[S = \{S_n: n \geq 0\} \quad , \text{όπου } S_0 = 0 \text{ και } S_n = \sum_{i=1}^{n} Y_i \text{ για } n \geq 1 \]

[42]
Πράγματι μια σύνθετη διαδικασία Poisson δεν είναι τίποτε άλλο παρά ένας τυχαίος περίπατος του οποίου τα άλματα έχουν διαχωριστεί σε ανεξάρτητες και εκθετικά κατανεμημένες περιόδους.

4.10. Γραμμική κίνηση Brown
Παίρνοντας το νόμο πιθανοτήτων

\[
\mu_{s,\gamma}(d_x) := \frac{1}{\sqrt{2\pi s^2}} e^{-\frac{(x-\gamma)^2}{2s^2}} d_x
\]

που ορίζεται στο \(\mathbb{R}\), όπου \(\gamma \in \mathbb{R}\) και \(S > 0\), έχω τη γνωστή Gaussian κατανομή με μέση τιμή \(\gamma\) και διακύμανση \(S^2\). Είναι γνωστό ότι:

\[
\int_{\mathbb{R}} e^{i\theta x} \mu_{s,\gamma}(d_x) = e^{-\frac{1}{2}S^2\theta^2+i\theta\gamma} = [e^{-\frac{1}{2}\frac{S}{\sqrt{n}} \theta^2+i\theta\gamma}]^n
\]

deίχνοντας πάλι ότι είναι απείρως διαιρέσιμη κατανομή, αυτή τη φορά με \(\alpha = -\gamma\), \(\sigma = S\) και \(\Pi = 0\). Αναγνωρίζουμε αμέσως τον χαρακτηριστικό εκθέτη

\[
\Psi(\theta) = S^2\theta^2 - i\theta\gamma
\]

ο οποίος είναι κι αυτός μιας κλίμακας κίνησης Brown με γραμμική μετατόπιση

\[
X_t := sB_t + \gamma t, \quad t \geq 0
\]

όπου \(B = \{B_t : t \geq 0\}\) είναι μια τυπική κίνηση Brown, δηλαδή γραμμική κίνηση Brown με παραμέτρους \(\sigma = 1\) και \(\gamma = 0\).

Το παραπάνω ήταν μια απλή εφαρμογή ώστε να επαληθεύσουμε ότι το \(X\) έχει στατικές ανεξάρτητες αυξήσεις με συνεχείς διαδρομές ως συνέπεια ότι το \(B\) ικανοποιείται.
4.11. Διάσπαση Levy-Ito και δομή διαδρομής

Το βασικό κομμάτι αυτού του κεφαλαίου, και για αυτό ορίστηκαν όλα τα παραπάνω, είναι η διάσπαση Levy – Ito. Αρχικά θα ορίσουμε τη δομή των διαδρομών των διαδικασιών Levy μέσω του ισχυρισμού ότι κάθε χαρακτηριστικός εκθέτης, Ψ, ανήκει σε μια απειρως διαιρέσιμη κατανομή απότες υπάρχει μια διαδικασία Levy με τον ίδιο χαρακτηριστικό εκθέτη όπως ορίστηκε αναλυτικότερα και παραπάνω. Αυτό θα πραγματοποιηθεί με τη βοήθεια της διάσπασης Levy-Ito, η οποία περιγράφει τη δομή μιας Levy διαδικασίας μέσω των τριών ανεξάρτητων βοηθητικών διαδικασιών Levy κάθε μία από τις οποίες έχει διαφορετική συμπεριφορά διαδρομής. Τέλος θα ερμηνεύσουμε τη διάσπαση αυτή μελετώντας κάποια από τα εφαρμοσμένα μοντέλα πιθανότητας που αναφέραμε στην αρχή του κεφαλαίου (Poisson και σύνθετο Poisson).

Σύμφωνα με ότι έχει προαναφερθεί κάθε χαρακτηριστικός εκθέτης Ψ που ανήκει σε μια απειρως διαιρέσιμη κατανομή μπορεί να γραφεί, με τη βοήθεια κάποιων μετασχηματισμών, στη μορφή:

$$\Psi(\theta) = \left\{i\alpha\theta + \frac{1}{2}\sigma^2\theta^2\right\} + \{\Pi(R(-1,1))\int_{|x|\geq 1} (1 - e^{i\theta x}) \frac{\Pi(d_x)}{\Pi(R\setminus(-1,1))}\} + \{\int_{0<|x|<1} (1 - e^{i\theta x} + i\theta x) \Pi(d_x)\} \tag{3}$$

Για όλα τα $\theta \in R$ όπου $a \in R$, $\sigma \geq 0$ και Π είναι ένα μέτρο για το $R/\{0\}$ που ικανοποιεί $\int_R (1+\lambda x^2)\Pi(dx) < \infty$. Σημειώνεται ότι η τελευταία

[44]
προϋπόθεση για το Π συνεπάγεται ότι \(\Pi(A) < \infty \) για όλα τα Borel Α τ.ω το μηδέν να είναι το συμπληρωματικό του \(A^c \) και ειδικότερα ότι \(\Pi(R(-1,1)) \in [0, \infty) \). Σε περίπτωση που \(\Pi(R(-1,1)) = 0 \) παρατηρείται ότι το δεύτερο σκέλος της (3) απουσιάζει. Τα τρία σκέλη της σχέσης (3) θα τα ονομάσουμε \(\Psi^1, \Psi^2, \Psi^3 \).

Η ουσία της αποσύνθεσης Levy-Ito περιστρέφεται γύρω από το ότι τα \(\Psi^1, \Psi^2, \Psi^3 \) αντιστοιχούν όλα στον χαρακτηριστικό εκθέτη τριών διαφορετικών τύπων διαδικασιών Levy. Επομένως το \(\Psi \) μπορεί να θεωρηθεί ως ο χαρακτηριστικός εκθέτη του ανεξάρτητου αθροίσματος των τριών αυτών διαδικασιών Levy όπου και αυτό θα είναι μια Levy διαδικασία. Πράγματι \(\Psi^1 \) και \(\Psi^2 \) αντιστοιχούν, αντίστοιχα, σε μια γραμμική κίνηση Brown με μετατόπιση

\[
X^{(1)} = \{ X_t^{(1)} : t \geq 0 \} \quad \text{όπου} \quad X_t^{(1)} = \sigma B_t - at \quad , t \geq 0
\]

και μια σύνθετη διαδικασία Poisson, έστω

\[
X^{(2)} = \{ X_t^{(2)} : t \geq 0 \} \quad \text{όπου} \quad X_t^{(2)} = \sum_{i=1}^{N_t} \xi_i \quad , t \geq 0
\]

όπου \(\{N_t : t \geq 0\} \) είναι μια Poisson διαδικασία με ρυθμό \(\Pi(R(-1,1)) \) και \(\{Y_i : i \geq 1\} \) είναι ανεξάρτητες και ισόνομες κατανεμημένες τυχαίες μεταβλητές με κατανομή \(\Pi(d_x)/\Pi(R\setminus(-1,1)) \) δίνοντας έμφαση στο \(\{x: |x| \geq 1\} \) (εκτός αν \(\Pi(R(-1,1)) = 0 \) στην οποία περίπτωση το \(X^{(2)} \) αντιστοιχεί σε μια διαδικασία που είναι ταυτόσημα ίση με μηδέν). Η απόδειξη της ύπαρξης μιας διαδικασίας Levy με δεδομένο τον

[45]
χαρακτηριστικό εκθέτη δίνεται από τη σχέση (3) ώστε να αποδειχτεί η ύπαρξη μιας διαδικασίας Levy $X^{(3)}$ της οποίας ο χαρακτηριστικός εκθέτης δίνεται από την $\Psi^{(3)}$. Σημειώνεται ότι:

$$\int_{0<|x|<1} (1 - e^{i\theta x} + i\theta x) \Pi(d_x)$$

$$= \sum_{n \geq 0} \left\{ \lambda_n \int_{2^{-(n+1)} \leq |x| \leq 2^{-n}} (1 - e^{i\theta x}) F_n(d_x) \right\} + i\theta \lambda_n \left(\int_{2^{-(n+1)} \leq |x| \leq 2^{-n}} x F_n(d_x) \right) \ (4)$$

Όπου $\lambda_n = \Pi(\{x: 2^{-(n+1)} \leq |x| \leq 2^{-n}\})$ και $F_n(d_x) = \Pi(d_x)/\lambda_n$ (υπό την προϋπόθεση ότι το n-οστό ολοκλήρωμα απουσιάζει αν $\lambda_n = 0$)

Σύμφωνα με τη σχέση (4) η διαδικασία $X^{(3)}$ ορίζεται από έναν διακριτο αριθμό ανεξάρτητων διαδικασιών σύνθετων Poisson με διαφορετικά ποσοστά αφίξεων (διαφορετικές προσαυξήσεις) και επιπλέον με γραμμική μετατόπιση. Για να γίνει αυτό μαθηματικά κατανοητό πρέπει να καθορίσουμε ορισμένα γεγονότα που αφορούν Poisson τυχαία μέτρα και τα αντίστοιχα martingales. Ο προσδιορισμός μιας Levy διαδικασίας, το x δηλαδή ως το ανεξάρτητο άθροισμα των διαδικασιών $X^{(1)}, X^{(2)}, X^{(3)}$, είναι γνωστό ως διάσπαση Levy-Ito. Ποιο ολοκληρωμένη η έννοια της διάσπασης φαίνεται από το παρακάτω θεώρημα.

Θεώρημα Διάσπασης Levy-Ito

Δεδομένου ότι κάθε $\alpha \in R$, $\sigma \geq 0$ και Π το μέτρο συγκέντρωσης στο $R\{0\}$ με την προϋπόθεση ότι

$$\int_R (1\Lambda x^2) \Pi(d_x) < \infty$$
υπάρχει ένας χώρος πιθανότητας στον οποίο υπάρχουν τρεις ανεξάρτητες διαδικασίες Levy $X^{(1)}, X^{(2)}, X^{(3)}$ όπου $X^{(1)}$ είναι μια γραμμική κίνηση Brown, $X^{(2)}$ είναι μια σύνθετη Poisson και $X^{(3)}$ είναι ένα τετράγωνο martingale με μετρήσιμο αριθμό αλμάτων σε κάθε πεπερασμένο χρονικό διάστημα με χαρακτηριστικό εκθέτη $\psi^{(3)}$. Παίρνοντας $X = X^{(1)} + X^{(2)} + X^{(3)}$ καταλήγουμε στο ότι υπάρχει ένας χώρος πιθανότητας στον οποίο ορίζεται μια διαδικασία Levy με χαρακτηριστικό εκθέτη:

$$
\psi(\theta) = i\alpha \theta + \frac{1}{2} \sigma^2 \theta^2 + \int_R \left(1 - e^{i\theta x} + i\theta x l_{|x|<1} \right) \Pi(dx),
$$

για $\theta \in \mathbb{R}$

4.12. Τυχαία μέτρα Poisson
Τα τυχαία μέτρα Poisson αποδεικνύουν ότι είναι σωστός ο μαθηματικός μηχανισμός που περιγράφαμε για τη δομή του άλματος που ενσωματώνεται σε οποιαδήποτε διαδικασία Levy. Θα εξετάσουμε πως σχετίζονται τα τυχαία αυτά μέτρα με τη δομή του άλματος των διαδικασιών Levy μέσω μιας σύνθετης Poisson διαδικασίας. Έστω λοιπόν ότι $x = \{x_t: t \geq 0\}$ είναι μια σύνθετη Poisson διαδικασία με μία κίνηση της μορφής:

$$
X_t = dt + \sum_{i=1}^{N_t} \xi_i, t \geq 0
$$

όπου $d \in \mathbb{R}$ και $\{\xi_i: i \geq 1\}$ είναι ανεξάρτητες και όμοια κατανεμημένες τυχαίες μεταβλητές με από κοινού συνάρτηση κατανομής F. Επιπλέον $\{T_i: i \geq 0\}$ είναι οι χρόνοι άφιξης της διαδικασίας Poisson $N = \{N_t: t \geq 0\}$ με ρυθμό $\lambda > 0$. Ας υποθέσουμε τώρα ότι επιλέγουμε οποιοδήποτε σύνολο $A \in \mathcal{B}[0, \infty) \times \mathcal{B}(\mathbb{R} \setminus \{0\})$. Όριζουμε

[47]
Δεδομένου ότι το Χ εμφανίζει σχεδόν σίγουρα πεπερασμένο αριθμό αλμάτων πάνω από μια πεπερασμένη χρονική περίοδο, προκύπτει ότι
\[N(A) = \sum_{i=1}^{\infty} I((T_i, \xi_i) \in A) \]

στο σημείο αυτό θα δούμε ένα πιο αυστηρό ορισμό για το τυχαίο μέτρο Poisson.

Ορισμός: Υποθέτουμε ότι (s, s, η) είναι ένας αυθαίρετος σ-πεπερασμένος χώρος μέτρησης. Έστω \(N : s \rightarrow \{0, 1, ... \} \cup \{\infty\} \) τέτοιο ώστε η οικογένεια \(\{N(A) : A \in S\} \) να είναι τυχαία μεταβλητή που ορίζεται στο χώρο πιθανότητας \((\Omega, F, P) \). Στη συνέχεια με \(N \) θα συμβολίζουμε το Poisson τυχαίο μέτρο στο \((s, s, \eta) \) (ή μερικές φορές ένα τυχαίο μέτρο Poisson στο \(S \) με ρυθμό \(\eta \)) αν:

a) \(A_1, ... A_n \) στο \(s \), οι μεταβλητές \(N(A_1), ... N(A_n) \) είναι ανεξάρτητες.
b) Για κάθε \(A \in S \), \(N(A) \) είναι Poisson κατανεμημένη με παράμετρο \((A) \) (δεχόμαστε ότι \(0 \leq \eta(A) \leq \infty \)).
c) \(P \)-σχεδόν βεβαίως το \(N \) είναι ένα μέτρο.

Στη δεύτερη συνθήκη σημειώνουμε ότι αν \(\eta(A) = 0 \) τότε γίνεται κατανοητό ότι \(N(A) = 0 \) με πιθανότητα 1 και αν \(\eta(A) = \infty \) τότε \(N(A) = \infty \) με πιθανότητα επίσης 1.

Συναρτήσεις τυχαίων μέτρων Poisson

Υποθέτουμε ότι το \(N \) είναι τυχαίο μέτρο Poisson επί του \((s, s, \eta) \). Έστω επίσης \(f : s \rightarrow R \) μετρήσιμη συνάρτηση.

1. Τότε
συγκλίνει απόλυτα σχεδόν πάντα αν και μόνο αν

\[\int_s (1\Lambda|f(x)|)\eta(dx) < \infty \]

2. Όταν η παραπάνω σχέση ισχύει τότε

\[E(e^{i\beta x}) = \exp \left\{ -\int_s (1 - e^{i\beta f(x)})\eta(dx) \right\} \]

για κάθε \(\beta \in R \).

3. Επιπλέον ισχύουν τα παρακάτω:

 • \(E(x) = \int_s f(x)\eta(dx) \) όταν \(\int_s |f(x)|\eta(dx) < \infty \)

και

 • \(E(x^2) = \int_s f(x)^2\eta(dx) + (\int_s f(x)\eta(dx))^2 \) όταν \(\int_s f(x)^2\eta(dx) < \infty \)

Ενσωματώνοντας τώρα το μέτρο martingale θα χρησιμοποιήσουμε τις παραπάνω ταυτότητες (1-3) για Poisson τυχαία μέτρα στο \([0, \infty) \times R\), \(B[0, \infty) \times B(R), dt \times \Pi(dx)\) όπου \(\Pi \) είναι ένα μέτρο συγκέντρωσης στο \(R\{0\} \). Θα μας απασχολήσουν ολοκληρώματα της μορφής:

\[\int_{[0, \tau]} \int_B xN(ds \times dx) \]

όπου \(B \in B(R) \). Τα ολοκληρώματα που είδαμε στις (1-3) σχέσεις παίρνουν τη μορφή:
με την εμφάνιση του παράγοντα \(t \) μπροστά από κάθε ολοκλήρωμα ως συνέπεια του μέτρου Lebesgue στο ρυθμό του Ν. Παρακάτω θα παραθέσουμε δύο σημαντικά λήμματα, χρήσιμα για την εφαρμογή της διάσπασης και ερμηνείας των στοχαστικών διαφορικών εξισώσεων (των χημικών ουσιών).

Λήμμα 1

Ας υποθέσουμε ότι το Ν είναι ένα τυχαίο μέτρο Poisson στο \([0, \infty) \times R\), \(B[0, \infty) \times B(R)\), \(dt \times \Pi(dx)\) όπου \(\Pi \) είναι ένα μέτρο συγκέντρωσης στο \(R \setminus B \in B(R) \) έτσι ώστε \(0 < \Pi(B) < \infty \). Επιπλέον

\[
X_t := \int_{[0,t]} \int_{B} x N(ds \times dx), \quad t \geq 0
\]

Είναι μία σύνθετη Poisson διαδικασία με ρυθμό άφιξης \(\Pi(B) \) και κατανομή άλματος \(\Pi(B)^{-1} \Pi(dx)|_B \)

Απόδειξη

Αρχικά βλέπουμε ότι \(\Pi(B) < \infty \) και γνωρίζουμε από τα παραπάνω ότι η \(X_t \) σχεδόν πάντα μπορεί να γραφεί ως άθροισμα, πεπερασμένων αριθμών για κάθε \(t > 0 \). Αυτό εξηγεί γιατί το \(X = \{X_t: t \geq 0\} \) είναι σωστό, συνεχές με αριστερά όρια (σχέση (1)). Επίσης σημειώνεται ότι για όλα τα \(0 \leq s < t < \infty \) ισχύει:
η οποία είναι ανεξάρτητη από το \(\{X_u: u \leq s\} \) καθώς το \(N \) δίνει ανεξάρτητες μετρήσεις (σχέση (2)). Έχουμε για όλα τα \(\theta \in R \),

\[
E(e^{i\theta(X_t-X_s)}) = \frac{E(e^{i\theta X_t})}{E(e^{i\theta X_s})} = \exp\left\{-(t-s)\int_B (1 - e^{i\theta x})\Pi(dx)\right\} = E(e^{i\theta X_{t-s}})
\]

και επομένως τα στάδια είναι στάσιμα. Τέλος ορίζουμε ότι ο εκθέτης του Levy-khintchine του \(X \) αντιστοιχεί σε εκείνο μια σύνθετης Poisson διαδικασίας με κατανομή άλματος που δίνεται από \(\Pi(B)^{-1}\Pi(dx)\big|_B \) και ρυθμό άφιξης \(\Pi(B) \).

Λήμμα 2

Έστω ότι ισχύει για \(N \) και \(B \) όπως και στο Λήμμα 1 ότι \(\int_B |x|\Pi(dx) < \infty \)

1) Η σύνθετη διαδικασία Poisson με τάση

\[
M_t := \int_{[0,t]} \int_B xN(ds \times dx) - t \int_B x\Pi(dx) , t \geq 0
\]

είναι ένα \(P \)-martingale με διήθηση

\[
F_t = \sigma(N(A): A \in B[0, t] \times B(R)) , t > 0
\]

2) Αν \(\int_B x^2\Pi(dx) < \infty \) τότε είναι ένα τετραγωνικό ολοκλήρωμα martingale.
Απόδειξη

1) Αρχικά σημειώνεται ότι η διαδικασία $M = \{M_t : t \geq 0\}$ είναι προσαρμοσμένη στη διήθηση $\{F_t : t \geq 0\}$. Σημειώνεται επίσης ότι για κάθε $t > 0$,

$$E(|M_t|) \leq E\left(\int_{[0,t]} \int_B |x| N(ds \times dx) + t \int_B |x| \Pi(dx)\right)$$

tο οποίο είναι πεπερασμένο επειδή $\int_B |x| \Pi(dx)$. Στη συνέχεια θα χρησιμοποιηθεί το γεγονός ότι το M έχει σταθερές και ανεξάρτητες προσαυξήσεις ώστε να συμπεράνουμε ότι για $0 \leq s \leq t < \infty$,

$$E(M_t - M_s | F_s) = E(M_{t-s})$$

$$= E\left(\int_{[s,t]} \int_B xN(ds \times dx) - (t-s) \int_B x\Pi(dx)\right) = 0$$

2) Για να δούμε ότι το M είναι ολοκληρώσιμο τετράγωνο μπορούμε με τη βοήθεια των παραπάνω ορισμάτων σε συνδυασμό με την υπόθεση ότι $\int_B x^2 \Pi(dx) < \infty$ να συμπεράνουμε ότι:

$$E\left(\left(M_t + t \int_B x\Pi(dx)\right)^2\right) = t \int_B x^2 \Pi(dx) + t^2 \left(\int_B x\Pi(dx)\right)^2$$

Οι διαδικασίες Levy μπορεί να έχουν περιορισμένες ή μη, δεσμευμένες διακυμάνσεις. Επίσης αν $\sigma = 0$ υπάρχει περίπτωση να έχουμε μονοπάτια απειρόστητης διακύμανσης. Όταν μια φαινομενικά θετική διαδικασία Levy έχει οριοθετημένη μεταβολή τότε πρέπει να πάρει τη μορφή:
\[X_t = -d_t + S_t \quad , t \geq 0 \]

όπου \(\{S_t: t \geq 0\} \) είναι ένα καθαρό άλμα και αναγκαστικά \(d > 0 \)

Στο σημείο αυτό θα διατυπώσουμε και θα ερμηνεύσουμε ένα μοντέλο που η διάσπαση σε Levy-Ito προσεγγίζει ικανοποιητικά τις στοχαστικές διαφορικές εξισώσεις που μας απασχολούν στη συγκεκριμένη εργασία. Πρόκειται για τα μαθηματικά που χρησιμοποιούνται στους οικονομικούς κλάδους τα οποία περιλαμβάνουν και τον κλάδο των εφαρμοσμένων πιθανοτήτων από όπου προκύπτουν και οι διαδικασίες Levy οι οποίες χρησιμεύουν για τη μοντελοποίηση και πρόβλεψη μελλοντικών μεταβολών είτε αφορά περιουσιακά στοιχεία είτε μόρια χημικών ουσιών. Το κλασικό μοντέλο για την εξέλιξη μιας μεταβολής είναι γενικά αποδεκτό ότι είναι μια εκθετική γραμμική κίνηση Brown με τη μετατόπιση:

\[S_t = se^{\sigma B_t + \mu t} \quad , t \geq 0 \]

όπου \(s > 0 \) είναι η αρχική κατάσταση μιας χημικής ουσίας , \(B = \{B_t: t \geq 0\} \) είναι μία κλασική κίνηση Brown , \(\sigma > 0 \) και \(\mu \in R \). Επιλέγοντας αυτό το μοντέλο εξασφαλίζεται πολλαπλασιαστική στασιμότητα και ότι για κάθε \(0 \leq u < t < \infty \)

\[S_t = S_u \times \tilde{S}_{t-u} \]

όπου \(\tilde{S}_{t-u} \) είναι ανεξάρτητες από το \(S_u \) και έχει την ίδια κατανομή με το \(S_{t-u} \). Πρόκειται για μια ρεαλιστική υπόθεση ως προς τις χρονικές συσχέτισεις στις δράσεις των φαρμάκων.

4.13. Διαδικασία εφαρμογής σε στοχαστικές διαφορικές χημικές εξισώσεις

Στο σημείο αυτό πρέπει να χωρίσω τα στοχαστικά ολοκληρώματα , που αντιστοιχούν στις εξισώσεις χημικών ουσιών , στο μέρος που είναι Ito από το Poisson σύμφωνα με μια χαρακτηριστική τριάδα όπως αυτή
ορίστηκε παραπάνω. Το δεύτερο μέρος θα αποτελεί το κομμάτι της χορήγησης του φαρμάκου ως σύνθετη Poisson διαδικασία. Πριν προχωρήσουμε όμως στον παραπάνω διαχωρισμό ας συνοψίσουμε σύμφωνα με τα παραπάνω τον τρόπο με τον οποίο πρόκειται να συμβεί καθώς και τις μεταβλητές που θα χρησιμοποιηθούν.

Μια διαδικασία Levy όπως είδαμε είναι μια στοχαστική διαδικασία με ανεξάρτητες και σταθερές προσαυξήσεις η οποία αντιπροσωπεύει κινήσεις των οποίων οι διαδοχικές μετατοπίσεις είναι τυχαίες , ανεξάρτητες και ταυτόσημα κατανεμημένες σε διάφορα χρονικά διαστήματα ίδιου μήκους. Είναι στην ουσία μια συνεχή πιθανότητα ενός τυχαίου περίπατου. Μια διαδικασία Levy μπορούμε να πούμε ότι αποτελείται από τρεις συνιστώσες ανεξάρτητες μεταξύ τους

- Μια γραμμική μετατόπιση.
- Μια κίνηση Brown.
- Μια σύνθετη Poisson διαδικασία με διαφορετικά μεγέθη άλματος.

Τα τρία αυτά χαρακτηριστικά παρουσιάζονται μέσα από τη φόρμουλα Levy-khintchine_συμβολίζονται με \((\alpha, \sigma^2, \Pi)\).

Η διάσπαση μπορεί να επιτευχθεί σε οποιαδήποτε διαδικασία Levy αρκεί να μπορεί να γραφτεί ως άθροισμα των παραπάνω τριών συνιστωσών. Έχοντας λοιπόν μια τρίαδα Levy \((\alpha, \sigma^2, \Pi)\) έχουμε αυτομάτως τρεις ανεξάρτητες Levy διαδικασίες οι οποίες ανήκουν στον ίδιο χώρο πιθανότητας \(X^{(1)}, X^{(2)}, X^{(3)}\) που όπως ορίσαμε παραπάνω

- \(X^{(1)}\) είναι μια γραμμική κίνηση Brown
- \(X^{(2)}\) είναι μια σύνθετη Poisson
- \(X^{(3)}\) είναι ένα ολοκληρώσιμο τετράγωνο martingale με μετρήσιμο αριθμό αλμάτων σε κάθε πεπερασμένο χρονικό διάστημα και χαρακτηρίζεται ως το μοναδικό

Η διαδικασία που ορίζεται από το \(X = X^{(1)} + X^{(2)} + X^{(3)}\) είναι μια τριπλή διαδικασία Levy. Επιπλέον αναφέρεται ότι η \(X^{(2)} + X^{(3)}\) διαδικασία μπορεί επίσης να γραφτεί ως άθροισμα από δύο ανεξάρτητες διαδικασίες . Η πρώτη ως καθαρό άλμα ίσο με μηδέν , με
martingale άλματος μικρότερο από την απόλυτη τιμή του 1 και η δεύτερη ως σύνθετη διαδικασία Poisson με άλματα μεγαλύτερα από την απόλυτη τιμή του 1.
6. Συμπεράσματα

Όπως έχει ήδη αναφερθεί σκοπός της παρούσας εργασίας ήταν η μοντελοποίηση κάποιων βασικών στοιχειωδών χημικών αντιδράσεων ώστε να μπορέσουμε να μελετήσουμε την ταχύτητα με την οποία συμβαίνουν οι χημικές διεργασίες και κατά συνέπεια το χρόνο δράσης ενός φαρμάκου. Το φυσικό αυτό φαινόμενο ποσοτικοποιήθηκε μέσω του Νόμου δράσης μάζας και μελετήθηκε αρχικά με τη χρήση διαφορικών εξισώσεων. Στη συνέχεια προχωρήσαμε στη μετατροπή τους σε στοχαστικές διαφορικές εξώσεις μέσω της διάχυσης ως διαταραχή με κίνηση Brown, δημιουργώντας στοχαστικά συστήματα στα οποία οι μελλοντικές καταστάσεις είναι περισσότερες από μία και δεν είναι ισοπίθανες (λόγο ύπαρξης τυχαιότητας) και οδηγηθήκαμε σε γραμμικά αλλά και μη γραμμικά συστήματα τα οποία και μελετήσαμε. Τέλος εισάγαμε κάποια μοντέλα κινδύνου και παραστήσαμε τη λήψη φαρμάκου ως σύνθετη Poisson διαδικασία δείχνοντας ότι με τον τρόπο αυτό γίνεται καλύτερη πρόβλεψη της μετατόπισης του φαρμάκου στον οργανισμό.

Συνοψίζοντας αξίζει να τονιστεί ότι η χημικές διεργασίες είναι ένα χρονοεξαρτώμενο φαινόμενο το οποίο επηρεάζεται από διάφορους παράγοντες. Για το λόγο αυτό εισάγαμε την έννοια της διάχυσης μέσω της κίνησης Brown και του ολοκληρώματος Ito ώστε να πάρουμε μια καλύτερη προσέγγιση των χημικών διεργασιών που συμβαίνουν στον οργανισμό. Τέλος μοντελοποίησαμε τον τρόπο με τον οποίο γίνεται η χορήγηση των φαρμάκων, μέσω μιας σύνθετης Poisson διαδικασίας και καταλήξαμε ότι η δόση του εκάστοτε χορηγούμενου φαρμάκου εξαρτάται κατά κύριο λόγο από τη γνώση που λαμβάνουμε από το Ito.
7. Βιβλιογραφία

- ΣΤΕΦΑΝΟΣ ΤΡΑΧΑΝΑΣ, Συνήθεις Διαφορικές Εξισώσεις, Πανεπιστημιακές εκδόσεις Κρήτης
- Ι.Ω. ΣΠΗΛΙΩΤΗΣ, επίκουρος καθηγητής ΕΜΠ, Στοχαστικές διαφορικές εξισώσεις, εκδόσεις Συμμεως, Αθήνα 2004
- ΘΕΟΦΙΛΟΥ Ν. ΚΑΚΟΥΛΛΟΥ, στοχαστικές ανελίξεις, εκδόσεις συμμετρία, Αθήνα 1995
- ΕΥΑΓΓΕΛΟΣ ΜΑΝΕΣΗΣ, Εισαγωγή στη κβαντική θεωρία πολλών βαθμών ελευθερίας, Πανεπιστήμιο Ιωαννίνων 1993
- Α.Ν. ΓΙΑΝΝΑΚΟΠΟΥΛΟΣ, Στοχαστική ανάλυση και εφαρμογές στη χρηματοοικονομική, Τόμος I, Σημειώσεις 2003
- ΑΝΘΩΝ ΚΥΡΙΑΚΟΥ, Fluctuations of Levy Processes with Applications, εκδόσεις Springer 2014
- ΔΗΜΗΤΡΙΟΣ Γ. ΚΩΝΣΤΑΝΤΙΝΙΔΗΣ, Θεωρία συλλογικού κινδύνου, τόμος I, εκδόσεις Συμμετρία 2011
- Ν.ΧΑΛΙΔΙΑΣ, Στοχαστικές διαδικασίες, Σημειώσεις 2015
- Χ. ΝΙΚΟΛΟΠΟΥΛΟΣ, Σημειώσεις για το μάθημα Μαθηματικά μοντέλα για το περιβάλλον
- www.wikipedia.org
- ΑΝΤΟΝΗΣ ΠΑΠΑΝΤΟΛΕΟΝ, An introduction to Levy processes with applications in Finance, paper