ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ
ΤΜΗΜΑ ΜΕΣΟΓΕΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
«ΑΡΧΑΙΟΛΟΓΙΑ ΤΗΣ ΑΝΑΤΟΛΙΚΗΣ ΜΕΣΟΓΕΙΟΥ
ΑΠΟ ΤΗΝ ΠΡΟΪΣΤΟΡΙΚΗ ΕΠΟΧΗ ΕΩΣ ΤΗΝ ΥΣΤΕΡΗ ΑΡΧΑΙΟΤΗΤΑ:
ΕΛΛΑΔΑ, ΑΙΓΥΠΤΟΣ, ΕΓΓΥΣ ΑΝΑΤΟΛΗ»

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΙΔΙΚΕΥΣΗΣ
«ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΣΥΓΚΡΙΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΕΘΟΔΩΝ ΓΙΑ ΑΡΧΑΙΟΛΟΓΙΚΕΣ
ΔΙΑΣΚΟΠΗΣΕΙΣ»

«ΖΑΧΑΡΗ ΑΧΙΛΛΕΟΠΟΥΛΟΥ»

ΡΟΔΟΣ, «ΙΟΥΝΙΟΣ 2018»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ
ΤΜΗΜΑ ΜΕΣΟΓΕΙΑΚΩΝ ΣΠΟΥΔΩΝ

«ΑΡΧΑΙΟΛΟΓΙΑ ΤΗΣ ΑΝΑΤΟΛΙΚΗΣ ΜΕΣΟΓΕΙΟΥ
ΑΠΟ ΤΗΝ ΠΡΟΪΣΤΟΡΙΚΗ ΕΠΟΧΗ ΕΩΣ ΤΗΝ ΥΣΤΕΡΗ ΑΡΧΑΙΟΤΗΤΑ:
ΕΛΛΑΔΑ, ΑΙΓΥΠΤΟΣ, ΕΓΓΥΣ ΑΝΑΤΟΛΗ»

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

«ΖΑΧΑΡΗ ΑΧΙΛΛΕΟΠΟΥΛΟΥ»
Α.Μ: 4352017004

«ΠΑΡΟΥΣΙΑΣΗ ΚΑΙ ΣΥΓΚΡΙΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΕΘΟΔΩΝ ΓΙΑ ΑΡΧΑΙΟΛΟΓΙΚΕΣ
ΔΙΑΣΚΟΠΗΣΕΙΣ»

«PRESENTATION AND COMPARATIVE EVALUATION OF ARCHAEOLOGICAL
PROSPECTION METHOD»

ΕΠΙΒΛΕΠΩΝ: Γεωργόπουλος Ανδρέας

SYMBOULEUTIKH EPIITROPIH: Στεφανάκης Εμμανουήλ
Συρόπουλος Σπύριδων

ΡΟΔΟΣ, «ΙΟΥΝΙΟΣ 2018»
ΕΥΧΑΡΙΣΤΙΕΣ

Η παρούσα εργασία αποτελεί διπλωματική εργασία στα πλαίσια του μεταπτυχιακού προγράμματος «Αρχαιολογία της Ανατολικής Μεσογείου από την Προϊστορική εποχή έως την Ύστερη Αρχαιότητα: Ελλάδα, Αίγυπτος, Εγγύς Ανατολή» του τμήματος Μεσογειακών Σπουδών.

Πριν την παρουσίαση των αποτελεσμάτων της παρούσας διπλωματικής εργασίας, αισθάνομαι την υποχρέωση να ευχαριστήσω ορισμένους από τους ανθρώπους που συνεργάστηκα μαζί τους και έπαιξαν πολύ σημαντικό ρόλο στην πραγματοποίησή της.

Πρώτα απ’ όλα, θέλω να ευχαριστήσω τον επιβλέποντα της μεταπτυχιακής εργασίας μου, Γεωργόπουλο Ανδρέα, Καθηγητή Ε.Μ.Π., για την πολύτιμη βοήθεια, καθοδήγησή του και την εμπιστοσύνη-εκτίμηση που μου έδειξε κατά τη διάρκεια της δουλειάς μου.

Στη συνέχεια θα ήθελα να ευχαριστήσω τους Καθηγητές Στεφανάκη Εμμανουήλ και Συρόπουλο Σπύρου, που δέχτηκαν να είναι μέλη της τριμελής επιτροπής αξιολόγησης της μεταπτυχιακής εργασίας και την προσεκτική ανάγνωση της εργασίας μου.

Επίσης, θα ήθελα να ευχαριστήσω τον Θείο μου Αχιλλεόπουλο Πέτρο, του οποίου οι συμβουλές υπήρξαν πολύτιμες για την λογική ροή και την βέλτιστη δομή της μεταπτυχιακής μου εργασίας.

Τέλος, θέλω να ευχαριστήσω τους γονείς μου, που με υπομονή και κουράγιο πρόσφεραν την απαραίτητη ηθική συμπαράσταση για την ολοκλήρωση της μεταπτυχιακής μου εργασίας.
<table>
<thead>
<tr>
<th>ΠΕΡΙΕΧΟΜΕΝΑ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Περίληψη</td>
<td>5</td>
</tr>
<tr>
<td>Summary</td>
<td>7</td>
</tr>
<tr>
<td>Εισαγωγή</td>
<td>9</td>
</tr>
<tr>
<td>Κεφάλαιο 1: Αεροφωτογραφίες</td>
<td>11</td>
</tr>
<tr>
<td>1.1. Φωτογραμμετρία – Φωτοερμηνεία</td>
<td>11</td>
</tr>
<tr>
<td>1.2. Τύποι αεροφωτογραφιών</td>
<td>15</td>
</tr>
<tr>
<td>1.3. Πηγές αεροφωτογραφιών για την Ελλάδα</td>
<td>16</td>
</tr>
<tr>
<td>1.4. Αρχές της φωτογραμμετρικής επεξεργασία</td>
<td>17</td>
</tr>
<tr>
<td>1.5. Υπολογισμός συντεταγμένων σημείων από μετρήσεις σε εικόνες</td>
<td>18</td>
</tr>
<tr>
<td>1.6. Φωτογραμμετρικά προϊόντα</td>
<td>20</td>
</tr>
<tr>
<td>1.7. Φωτοερμηνευτικά χαρακτηριστικά</td>
<td>24</td>
</tr>
<tr>
<td>1.8. Ερμηνεία των θερμικών εικόνων</td>
<td>27</td>
</tr>
<tr>
<td>1.9. Παραδείγματα εντοπισμού αρχαιοτήτων με τη χρήση αεροφωτογραφίας</td>
<td>29</td>
</tr>
<tr>
<td>Κεφάλαιο 2: Τηλεπισκόπηση</td>
<td>32</td>
</tr>
<tr>
<td>2.1. Φασματική απόκριση των αντικειμένων – Φασματικές ταυτότητες</td>
<td>33</td>
</tr>
<tr>
<td>2.2. Οργάνα καταγραφής και δορυφόροι παρατήρησης της Γης</td>
<td>34</td>
</tr>
<tr>
<td>2.3. Χαρακτηριστικά της τροχιάς των δορυφόρων</td>
<td>35</td>
</tr>
<tr>
<td>2.4. Οργάνα καταγραφής</td>
<td>36</td>
</tr>
<tr>
<td>2.5. Συνδυασμός φασματικών ζωνών – Σύνθετες ψευδέγχρωμες εικόνες (FCC)</td>
<td>40</td>
</tr>
<tr>
<td>2.6. Αρχές ερμηνείας δορυφορικών εικόνων και ψηφιακών αεροφωτογραφιών</td>
<td>40</td>
</tr>
<tr>
<td>Κεφάλαιο 3: Γεωραντάρ</td>
<td>42</td>
</tr>
<tr>
<td>3.1. Υπολογισμός βάθους ανακλαστικής διεπιφάνειας (στόχου)</td>
<td>42</td>
</tr>
<tr>
<td>3.2. Συχνότητα λειτουργίας και διακριτική ικανότητα ενός γεωραντάρ</td>
<td>43</td>
</tr>
<tr>
<td>3.3. Εφαρμογές της μεθόδου του γεωραντάρ</td>
<td>45</td>
</tr>
<tr>
<td>3.4. Παραδείγματα εφαρμογής</td>
<td>47</td>
</tr>
<tr>
<td>Κεφάλαιο 4: Βαρυτομετρική Μέθοδος</td>
<td>51</td>
</tr>
<tr>
<td>4.1. Πεδίο βαρύτητας της Γης</td>
<td>51</td>
</tr>
<tr>
<td>4.2. Μετρήσεις βαρύτητας</td>
<td>52</td>
</tr>
<tr>
<td>4.3. Κανονικό πεδίο βαρύτητας</td>
<td>53</td>
</tr>
<tr>
<td>4.4. Οργάνα και μέθοδος μετρήσεων</td>
<td>53</td>
</tr>
<tr>
<td>4.4.1. Μετρήσεις με τη μέθοδο ταλάντωσης εκκρεμών.</td>
<td>54</td>
</tr>
<tr>
<td>4.4.2. Μετρήσεις με τη μέθοδο της ελεύθερης πτώσης των σωμάτων.</td>
<td>54</td>
</tr>
<tr>
<td>4.4.3. Οργάνα μέτρησης με τη μέθοδο παραμόρφωσης ελατηρίου</td>
<td>54</td>
</tr>
<tr>
<td>4.4.4. Βαρυτόμετρα Worden</td>
<td>55</td>
</tr>
</tbody>
</table>
Η δορυφορική παρατήρηση της γης αποτελεί τα τελευταία χρόνια, σημαντικό εργαλείο για τη μελέτη του περιβάλλοντος, την κατανόηση του παγκόσμιου κλίματος, καθώς και το σχεδιασμό και την υποστήριξη αναπτυξιακών και παραγωγικών δραστηριοτήτων σε μια περιοχή. Η μελέτη των διαφόρων φαινομένων απαιτεί, τις περισσότερες φορές, τη χρήση ειδικών αερομεταφερομένων δεκτών οι οποίοι επιτρέπουν την καταγραφή φαινομένων και στοιχείων που δεν είναι ορατά στο ανθρώπινο μάτι, τόσο πάνω όσο και μέσα στα εδάφη.

Επίσης χρησιμοποιούνται νέες μέθοδοι έρευνας βασισμένες στη φυσική, προσφέροντας σημαντική βοήθεια στους αρχαιολόγους είτε για να ανακαλύψουν νέες αρχαιολογικές τοποθεσίες, είτε για να υποβοηθούν στον εντοπισμό, ερμηνεία και κατανόηση αρχαιολογικών στοιχείων για τη διευκόλυνση της ανασκαφικής έρευνας. Στα κεφάλαια που ακολουθούν γίνεται παρουσίαση των σύγχρονων γεωφυσικών μεθόδων που βοηθούν προς αυτή την κατεύθυνση.

Συγκεκριμένα, στο πρώτο κεφάλαιο παρουσιάζεται η χρήση της Αεροφωτογραφίας που κατέχει μια ιδιαίτερη θέση αφού αποτελεί την, υψηλότερης ανάλυσης και ακρίβειας, πρωτογενή πληροφορία, που μέσα από τις διαδικασίες της αναλυτικής ή και ψηφιακής φωτογραμμετρίας μετασχηματίζεται σε μεγάλης ακρίβειας ψηφιακά τοπογραφικά υπόβαθρα ή ορθοφωτοχάρτες, εργαλεία πρωταρχικής σημασίας για το σχεδιασμό της αρχαιολογικής έρευνας πεδίου, αλλά και για τη μελέτη κάθε μορφής έργων υποδομής και ανάπτυξης.

Σε συνέχεια της αεροφωτογράφησης, στο δεύτερο κεφάλαιο αναφέρεται η Τηλεπισκόπηση που είναι η επιστήμη της απόκτησης πληροφοριών από απόσταση, δηλ. χωρίς φυσική επαφή με τα αντικείμενα, σώματα, φυσικούς σχηματισμούς και γενικά υλικές δομές. Η πληροφορία αποκτάται με την ανίχνευση και μέτρηση μεταβολών που επηρεάζει στον περιβάλλοντα χώρο το αντικείμενο το οποίο επισκοπούμε.

Στο τρίτο κεφάλαιο αναφέρεται η έρευνα με Γεωραντάρ, που είναι μια σύγχρονη τεχνική γεωφυσικής έρευνας για την ανεύρεση υπεδαφικών δομών ενδιαφέροντος και βασίζεται στην αντίθεση ηλεκτρικών και μαγνητικών ιδιοτήτων, επιτυγχάνοντας την ανακάλυψη και κατανόηση αρχαιολογικών στοιχείων για τη διευκόλυνση της ανασκαφικής έρευνας. Στην παρούσα εκδοχή ενσωματώνεται τον είδος της αναλυτικής πληροφορίας τρισδιάστατης φυσικής, καθώς και της κατάλυσης από διαφορετικές συνθήκες μεταβολής των ηλεκτρικών και μαγνητικών ιδιοτήτων, που δημιουργούν τη διαφορά βαρύτητας και τη διαφορά ηλεκτρικής αγωγιμότητας.

Στο τέταρτο κεφάλαιο παρουσιάζεται η ηλεκτρική μέθοδος που βασίζεται στην ηλεκτρομαγνητική έρευνα με την κατανόηση της ηλεκτρικής αγωγιμότητας των διεξόδων του φθινοπωρινού υπεροχής και την καθορισμό της αναλυτικής συνθήκης μεταβολής των ηλεκτρικών και μαγνητικών ιδιοτήτων. Στην παρούσα εκδοχή ενσωματώνεται τον είδος της αναλυτικής πληροφορίας τρισδιάστατης φυσικής, καθώς και τη διαφορά ηλεκτρικής αγωγιμότητας, ειδικά στις περιπτώσεις στις οποίες συντρέχουν και τεκτονικοί λόγοι.

Στο πέμπτο κεφάλαιο παρουσιάζεται η ηλεκτρική μέθοδος που βασίζεται στη διαφορά της ηλεκτρικής αγωγιμότητας των πετρωμάτων, η ηλεκτρομαγνητική αναλυτική πληροφορία, καθώς και την κατανόηση της ηλεκτρομαγνητικής οδηγίας των διεξόδων του φθινοπωρινού υπεροχής και την καθορισμό της αναλυτικής συνθήκης μεταβολής των ηλεκτρικών και μαγνητικών ιδιοτήτων που δημιουργούν τη διαφορά ηλεκτρικής αγωγιμότητας και τη διαφορά ηλεκτρικής αγωγιμότητας και τη διαφορά μαγνητικής αγωγιμότητας.
εδάφη αποκτά σημαντικές τιμές. Συνεπώς, η μέτρηση της ηλεκτρικής αγωγιμότητας ή της ειδικής ηλεκτρικής αντίστασης των πετρωμάτων, παρέχει υπό ορισμένες προϋποθέσεις τη δυνατότητα να εκτιμήσουμε τη σύσταση των στρωμάτων του υπεδάφους. Γενικά, η εφαρμογή των ηλεκτρικών μεθόδων περιορίζεται στην έρευνα γεωλογικών σωμάτων μικρού σχετικά βάθους, διότι η διαχωριστική ικανότητα των ηλεκτρικών μεθόδων ελαττώνεται ως μεγαλώνει το βάθος των προς διάκριση σχηματισμών.

Στο έκτο κεφάλαιο παρουσιάζεται η μαγνητική διακόπηση που είναι μια παθητική τεχνική με την οποία μπορούμε να μετρηθούν λεπτές μεταβολές (ανωμαλίες) στο μέγεθος δηλ. στη βαθμίδα του γήινου μαγνητικού πεδίου. Οι ανωμαλίες προέρχονται από τις μεταβολές στην μαγνητική επιδεκτικότητα των θαμμένων αντικειμένων, οι οποίες συμβαίνουν όταν η υλική πλούσια σε σίδηρο σχηματίζει σε σίδηρο σχηματίζει το πιο σίδηρο μαγνητικός δομής όπως ο μαγνητίτης και ο αιματίτης. Αυτή η μαγνητική ενίσχυση σχετίζεται συχνά με το ψήσιμο του υλικού, αλλά και πιο εκλεπτυσμένες αναλογθένες μεταβολές ή οσφυλόμενες σε βακτήρια μπορούν να συμβουνά κάτω από κατάλληλες συνθήκες του εδάφους. Τέτοιες συνθήκες συμβαίνουν συχνά στα περισσότερα επιφάνεια και δίνουν σαφείς και νηφικές συνθήκες μαγνητικές διαταράξεις.

Το εβδομένιο κεφάλαιο αναφέρεται στις σεισμικές μεθόδους διερεύνησης του υπεδάφους που βασίζονται στην αρχή ότι, τα τεχνητά ελαστικά κύματα (που δημιουργούνται με εκρήξεις ή με κρούσεις στο υπεδάφος), κινούνται στο υπεδάφος όταν το υλικό εξαρτάται από την πυκνότητα και τις ελαστικές ιδιότητες των πετρωμάτων και εμφανίζουν τις κλασσικές κυματικές ιδιότητες (ανάκλαση, διάθλαση, περίθλαση) μαγνητικής διακόπησης στον εντοπισμό των διαχωριστικών συνθήκες.

Τέλος, στο χτένο κεφάλαιο αναλύονται τα παθοβολιστικά υποπερβρίγρια υπεροχών όπως μασάζουν με τα τεχνητά κυμάτια κάτω από τις αναλογθένες μεταβολές και να συλλέξουμε τις αναλογθένες υποβροχίες γεωλογικές ενισχύσεις, επεξεργάζονται στην εξερεύνηση του αρχαιολογικού υπεδάφους και να συλλέξουμε τις αναλογθένες πληροφορίες γεωλογικές ενισχύσεις.
SUMMARY

The satellite observation of the earth has been an important tool in recent years to study the environment, to understand the global climate, and to design and support development and production activities in an area. The study of the various phenomena often requires the use of special airborne receivers which allow the recording of phenomena and elements not visible to the human eye, both above and in the ground.

New research methods based on physics are also being used, offering significant assistance to archaeologists either to discover new archaeological sites or to help identify, interpret and understand archaeological data to facilitate excavation research. The chapters below present a presentation of modern geophysical methods that help in this direction.

In particular, the first chapter presents the use of Aerial Photography which holds a particular position since it constitutes the highest resolution and accuracy of primary information that transforms through digital analytical and / or digital photogrammetry into high precision digital topographical or orthophotographic maps, which tools are of primary importance for the planning of archaeological field research, but also for the study of all forms of infrastructure and development projects.

Following the aerial photography, the second chapter refers to Remote Sensing, which is the science of remote information acquisition, ie without physical contact with objects, bodies, physical formations, and generally physical structures. The information is obtained by detecting and measuring changes that bring about the environment of the object we are reviewing.

The third chapter deals with the Geodatar survey, which is a modern geophysical research technique for finding substructured structures of interest and is based on the identification of interfaces between materials exhibiting different electrical and magnetic properties. In such research, parameters such as the depth of penetration, the contrast of electrical and magnetic properties between the different subsoil structures and the desired resolution, are important, depending on the velocity of the electromagnetic waves and the difference in electrical conductivity between materials of the subsoil.

In the fourth chapter, we present the gravitometric method based on the density difference between the rocks. Density differences in the subsoil affect the distribution of gravitational stress on the surface of the Earth. Consequently, some minerals cause gravity differences because of their higher density compared to the density of surrounding rocks. Differences in gravity are also observed when neighboring rocks have different densities, especially in cases where tectonic reasons exist.

In the fifth chapter we present the electrical method based on differences in the electrical conductivity of the rocks of the upper part of the Earth's crust, depending on their species and physical condition. In compact rocks and dry soils the electrical conductivity is small, while in porous rocks and wet soils it acquires significant values. Consequently, the measurement of electrical conductivity or special electrical resistance of rocks provides under certain conditions the ability to assess the composition of subsoil layers. Generally, the application of electrical methods is limited to the study of geological bodies of relatively small depth because the separation capacity of electrical methods is considerably reduced as the depth of the discrete formations increases.
The sixth chapter presents the magnetic scrambling which is a passive technique by which subtle changes in the magnitude of the Earth's magnetic field can be measured. The anomalies derive from changes in the magnetic susceptibility of the buried objects, which occur when e.g. iron-rich materials form more powerful ferromagnetic structures such as magnetite and hematite. This magnetic amplification is often associated with baking the material, although more sophisticated inorganic changes or due to bacteria can occur under appropriate soil conditions. Such conditions occur naturally in most surface soils that contain archaeologically interesting materials, and give irrefutable magnetic disturbances.

The seventh chapter refers to seismic methods of exploration of the subsoil based on the principle that artificial elastic waves (created by explosions or shocks on the ground) move to the ground at a velocity which depends on the density and elastic properties of rocks and display the classical wave properties (reflection, refraction, diffraction) by helping to locate the dividing surfaces.

Finally, the eighth chapter analyzes the sound surveys of underwater surveys, where with the appropriate measuring instruments we can identify an area of archaeological interest and collect the necessary information (acoustics, visuals etc.) that will lead us to the evaluation of its archaeological interest.

The presented geophysical survey methods are applied to the exploration of archaeological sites on a world scale and refer to all the books of introduction to archaeological science. They rely on the fact that antiquities are disruptions to the homogeneity of the upper layers of the Earth and therefore cause abnormalities in natural or artificial fields. These abnormalities are recorded with the help of appropriate instruments, processed according to internationally accepted methods and finally a mapping of the underground architectural remains is presented.
ΕΙΣΑΓΩΓΗ

Η εφαρμογή της γεωφυσικής στην αρχαιολογία καθιερώθηκε αρχικά στην Ευρώπη και ιδιαίτερα στη Μ. Βρετανία η οποία πρωτοπόρησε στην εξέλιξή της, τις δεκαετίες του 1940 και 1950.

Οι περισσότερες γεωφυσικές τεχνικές που χρησιμοποιούνται σήμερα στις αρχαιολογικές έρευνες, αναπτύχθηκαν αρχικά για γεωλογικές εφαρμογές. Ενώ οι φυσικές αρχές είναι οι ίδιες, το μικρό βάθος έρευνας και το σχετικά μικρό μέγεθος των αρχαιολογικών αναζητήσεων, δοκίμασαν τα όρια της γεωφυσικής επιστήμης. Η έρευνα με αυτά τα συγκεκριμένα χαρακτηριστικά οδήγησε στην ανάπτυξη μιας υποκατηγορίας της γεωφυσικής που σήμερα ονομάζεται «αρχαιολογική γεωφυσική».

Το 1946, ο R.J.C. Atkinson εισήγαγε την χρήση της ηλεκτρικής διασκόπησης για τη διερεύνηση αρχαιολογικών θέσεων. Η εφαρµογή άλλων τεχνικών έφευγε πολύ μεγάλη άνθηση κατά τη δεκαετία του 1960 με την κατασκευή ενελκτικών οργάνων μέτρησης της αντίστασης του εδάφους, την εισαγωγή των διαφορικών μαγνητόμετρων για την μέτρηση της βαθμίδας της έντασης του μαγνητικού πεδίου, την εφαρμογή της μεθόδου του γεωραντάρ και την ερευνητική δουλειά πάνω στις ηλεκτρομαγνητικές μεθόδους.

Η θεωρητική μελέτη και ισχύςνες εφαρμογές γεωφυσικών μεθόδων στην αρχαιολογία γνώρισε πολύ μεγάλη άνθηση κατά τη δεκαετία του 1960 με την κατασκευή επιτυχημένης τεχνικής αυτής. Ενώ οι βελτιώσεις είναι ακόμη και σήμερα σε εξέλιξη, η μέθοδος της ηλεκτρικής αντίστασης έχει καθιερωθεί ως μία από τις βασικές μεθόδους της γεωφυσικής στην αρχαιολογία.

Η ανάπτυξη μίας άλλης επιτυχημένης τεχνικής, της μαγνητικής, ξεκίνησε το 1958 με τη χρήση ενός πρωτονιακού μαγνητόμετρου. Το ενδιαφέρον για την εξέλιξη αυτής της τεχνικής προωθήθηκε μετά από την ανακάλυψη κλιβάνων στο Peterborough του Ηνωμένου Βασιλείου και συνέχισε ως η δομή της μαγνητικής ανωμαλίας και σε άλλα χαρακτηριστικά του εδάφους, όπως χαντάκια και υπόγεια κοιλώματα. Τη δεκαετία του 1960 ξεκίνησε η αυτόματη ψηφιακή καταγραφή των μετρήσεων με τα νέα fluxgate magnetometers, η οποία βελτίωσαν κατά πολύ την ταχύτητα των μετρήσεων.

Οι ηλεκτρομαγνητικές μέθοδοι χρησιμοποιούνται όλο και περισσότερο στις αρχαιολογικές μελέτες. Συγκεκριμένα, το Γεωραντάρ είναι ένα καθιερωμένο εργαλείο που αναπτύχθηκε για τον εντοπισμό κοιλοτήτων, φρεάτων, ορυχείων και σηράγγων και γρήγορα υιοθετήθηκε από τη γεωλογία και σε γεωτεχνικά έργα. Μία από τις πρώτες αρχαιολογικές εφαρμογές του γεωραντάρ ήταν η χαρτογράφηση αρχαίων θαμμένων τοίχων στο φαράγγι Chaco των ΗΠΑ.

Με την εξέλιξη της Πληροφορικής, η συλλογή των γεωφυσικών δεδομένων είναι πλέον πλήρως ψηφιακή, ενώ το αυξανόμενο μέγεθος και η μεγαλύτερη ανάλυση δειγματοληψίας των

1 Clark 1957, 900-901.
2 Allred 1964, 14-19.
3 Bevan και Kenyon 1975, 2-7.
4 Colani 1966, 3-8.
5 Kjell Persson 2005, 90.
σύγχρονων ερευνών έχει ως αποτέλεσμα τη συσσώρευση τεράστιων ποσοτήτων δεδομένων.

Γενικά, οι γεωφυσικές διασκοπήσεις μπορούν να ταξινομηθούν σε ενεργητικές και
παθητικές. Οι παθητικές διασκοπήσεις συμπεριλαμβάνουν μετρήσεις υποβάθρους φυσικών πεδίων ή ιδιοτήτων της γης και σε αυτή τη κατηγορία ανήκουν οι βαρυτημετρικές και οι μαγνητικές με φυσικά πεδία το
βαρυτικό και το μαγνητικό, αντίστοιχα, όπου απλά μετριούνται οι χωρικές μεταβολές στην
προσπάθεια να βρεθούν συμπεράσματα για την υπεδαφική γεωλογία.

Κατά τη διεξαγωγή των ενεργητικών διασκοπήσεων, ένα σήμα εισάγεται στη γη και εμείς
παρατηρούμε το πώς η γη αποκρίνεται στο σήμα αυτό. Τα σήματα αυτά μπορούν να έχουν μια
πληθώρα μορφών όπως μετατόπιση ή ηλεκτρικό ρεύμα. Η μέθοδος ειδικής αντίστασης συνεχούς
ρεύματος και η σεισμική ανήκουν στην κατηγορία ενεργών γεωφυσικών μεθόδων.

Στην αρχαιολογική έρευνα εφαρμόζονται και οι ενεργητικές αλλά και οι παθητικές
γεωφυσικές μέθοδοι, οι οποίες στηρίζονται στη διαφοροποίηση των μετρήσεων μεταξύ του
φυσικού υποβάθρου ενός χώρου και ενός αρχαιολογικού στοιχείου. Όπως γίνεται αντιληπτό για τον
γεωφυσικό που χαρτογραφεί μία περιοχή το σημαντικό είναι οι διαφοροποιήσεις των τιμών που
εντοπίζονται και όχι το απόλυτο μέγεθος των τιμών των μετρήσεων.

Στην αρχαιολογική έρευνα εφαρμόζονται και οι ενεργητικές αλλά και οι παθητικές
γεωφυσικές μέθοδοι, οι οποίες στηρίζονται στη διαφοροποίηση των μετρήσεων μεταξύ του
φυσικού υποβάθρου ενός χώρου και ενός αρχαιολογικού στοιχείου. Όπως γίνεται αντιληπτό για τον
γεωφυσικό που χαρτογραφεί μία περιοχή το σημαντικό είναι οι διαφοροποιήσεις των τιμών που
εντοπίζονται και όχι το απόλυτο μέγεθος των τιμών των μετρήσεων.

Το είδος, το μέγεθος και το βάθος του στόχου που επιδιώκουμε να ανιχνεύσουμε είναι οι
κυριότεροι παράγοντες που καθορίζουν την πυκνότητα της δειγματοληψίας στο ύπαιθρο. Οι
γεωφυσικές μετρήσεις γίνονται συνήθως σε τομείς με ορισμένη και σταθερή απόσταση μεταξύ τους
(δίκτυο). Η απόσταση μεταξύ των τομών, αλλά και το διάστημα κάθε μέτρησης μέσα σε μία τομή,
αποτελούν σημεία μεγάλης προσοχής για μια σωστή μελέτη. Στις περισσότερες αρχαιολογικές
γεωφυσικές έρευνες προτιμάται διάστημα μεταξύ των τομών που κυμαίνεται έως 0.50m έως 1.00m.
Οσο μικρότερη διαφοροποίηση παρουσιάζουν οι τομές των μετρήσεων τόσο μείωσε την
απόσταση των τομών μας για μεγαλύτερη ανάλυση. Σε ότι αφορά την πυκνότητα των δειγμάτων
μέσα σε κάθε τομή, το μέγεθος του στόχου είναι ο κυριότερος παράγοντας που καθορίζει. Η
πιθανότητα ανίχνευσης μικρών στοιχείων βεληνεκτά με την αύξηση στην πυκνότητα της
dειγματοληψίας.

Οι γεωφυσικές μέθοδοι που θα εξετασθούν στη συνέχεια είναι η μέθοδος ειδικής
ηλεκτρικής αντίστασης, η μέθοδος του γεωραντάρ, η σεισμική, μαγνητομετρική και βαρυτημετρική
μέθοδος, δίνοντας αντίστοιχα παραδείγματα εφαρμογής τους.

Ως αρχικά θα γίνει μια παρουσίαση των μεθόδων της τηλεπισκόπησης (αεροφωτογραφίες,
dορυφορικές φωτογραφίες), δεδομένου ότι αποτελούν χρήσιμα εργαλεία ανάληψης πληροφοριών κατά τη
φάση ανίχνευσης και εντοπισμού του χώρου αρχαιολογικού ενδιαφέροντος.
Κεφάλαιο 1: ΑΕΡΟΦΩΤΟΓΡΑΦΙΑ

1.1 Φωτογραμμετρία – Φωτοερμηνεία

Φωτογραμμετρία είναι η τέχνη, η επιστήμη και η τεχνική απόκτησης αξιόπιστων μετρητικών πληροφοριών του σχήματος, της διάστασης και της θέσης οποιουδήποτε αντικειμένου στο χώρο και στο περιβάλλον, μέσω διαδικασιών καταγραφής και μέτρησης σε μία ή περισσότερες εικόνες. Η φωτοερμηνεία αποτελεί κλάδο της Φωτογραμμετρίας. Σκοπός της είναι η αναγνώριση και ο προσδιορισμός φυσικών ή ανθρωπογενών χαρακτηριστικών μέσω διαδικασιών ανάλυσης και ερμηνείας εικόνων.

Η τυποποίηση της φωτοερμηνευτικής γνώσης για ένα συγκεκριμένο αντικείμενο γίνεται μέσω μιας σειράς ιδιοτήτων που ονομάζονται φωτοερμηνευτικά χαρακτηριστικά, τα οποία χρησιμοποιούνται για την εξαγωγή χρήσιμων πληροφοριών.

Ενώ η φωτογραμμετρία αποσκοπεί στη χρήση εικόνων για τη συλλογή ποσοτικών πληροφοριών, η φωτοερμηνεία χρησιμοποιεί τις εικόνες για τη λήψη ποιοτικών πληροφοριών. Ο όρος φωτογραμμετρία (photogrammetry, photogrammetrie) είναι Ελληνική λέξη και προέρχεται από τη σύνθεση των λέξεων φως, γραμμή και μέτρηση. Από το 1858, ο Γερμανός Albrecht Meydenbauer χρησιμοποίησε φωτογραφίες στη γεωμετρική τεκμηρίωση κτιρίων για να υποστηρίξει την αναγκαιότητα καταγραφής και αποτύπωσης της πολιτιστικής κληρονομιάς σε περίπτωση καταστροφής.

Οι εφαρμογές της φωτογραμμετρίας–φωτοερμηνείας είναι πολλαπλές. Ενδεικτικά αναφέρονται οι παρακάτω:

- αρχιτεκτονική (αποτύπωση κτιρίων και συνόλων),
- αρχαιολογία (αποτύπωση αρχαιολογικών χώρων και μνημείων πολιτιστικής κληρονομιάς),
- γεωλογία (στρωματογραφικές και γεωμορφολογικές μελέτες, σχεδιασμός γεωλογικών χαρτών, καταγραφή ζημιών από σεισμό),
- δασολογία (σύνταξη δασικών χαρτών, διαχείριση πυρκαγιών),
- γεωργία (προσδιορισμός τύπων εδαφών, οριοθέτηση καλλιεργούμενων εκτάσεων),
- κατασκευές (χωροθέτηση έργων, μελέτη και κατασκευή τεχνικών έργων),
- οδοποιία (χώραξη δρόμων),
- πολεοδομία (πράξεις εφαρμογής),
- τοπογραφία (σύνταξη τοπογραφικών διαγραμμάτων και χαρτών, γεωμετρική τεκμηρίωση κτιρίων και μνημείων πολιτιστικής κληρονομιάς),
- κτηματολόγιο (σύνταξη κτηματολογικών χαρτών),
- στρατιωτικές εφαρμογές (αναγνωρίσεις, σχεδιασμός στρατιωτικών κινήσεων).

8 ISPRS, 2015.
9 Λυριτζής 2008, 236.
10 Lillesand et al. 2003, 750.
11 Blachut and Burkhardt 1988,
Η επιστήμη της Φωτογραμμετρίας αποσκοπεί στην απόκτηση αξιόπιστης ποσοτικής πληροφορίας (σχήμα, διάσταση και θέση) οποιουδήποτε αντικειμένου του χώρου και του Περιβάλλοντος, μέσω διαδικασιών καταγραφής και μέτρησης σε μία ή περισσότερες εικόνες.

Οι αεροφωτογραφίες αποτελούν τα πρωταρχικά δεδομένα της Φωτογραμμετρίας και της Τηλεπισκόπησης. Για να χαρακτηριστεί μια φωτογραφία της γης ως αεροφωτογραφία, θα πρέπει η φωτογράφιση να πραγματοποιείται από ορισμένο ύψος, δηλαδή η φωτογραφική μηχανή να βρίσκεται σε πλατφόρμα αεромεταφοράς που μπορεί να είναι δορυφόρος, αεροπλάνο, ελικόπτερο, αερόστατο και γερανός.13

Ιστορικές ημερομηνίες της αεροφωτογραφίας για την Ελλάδα είναι οι παρακάτω:

- Το 1945 που έγινε η πρώτη κάλυψη ολόκληρης της χώρας με αεροφωτογραφίες κλίμακας 1:40.000.
- Το 1963 που έγινε μια δεύτερη αεροφωτογράφιση της χώρας σε κλίμακα 1:30.000,
- και από το 1960 και μετά που γίνεται περιοδικά αεροφωτογράφιση της χώρας σε κλίμακα 1:15.000 καθώς και σε άλλες κλίμακες.

Τα σημαντικότερα χαρακτηριστικά μίας αεροφωτογραφίας είναι ο αύξων αριθμός, η ημερομηνία και ώρα λήψης, η εστιακή απόσταση (f), το ύψος πτήσης (H), η κλίμακα, η επικάλυψη και τα εικονοσημεία.14

Εικόνα 1.2. Αναλογική αεροφωτογραφία και τα χαρακτηριστικά της.

14 Λυριτζής 2008, 238.
Οι αεροφωτογραφίες ανάλογα με την κλίση του οπτικού άξονα της φωτογραφικής μηχανής και της κατακόρυφου στο ίδιο σημείο, διακρίνονται σε:

- αυστηρώς κατακόρυφες (όταν η διεύθυνση του οπτικού άξονα ταυτίζεται με την κατακόρυφο),
- κατακόρυφες (κλίση έως 5ο),
- λίγο πλάγιες (κλίση από 5ο έως 30ο)
- πλάγιες (κλίση από 30ο έως 60ο),
- πολύ πλάγιες (όταν περιλαμβάνεται ο ορίζοντας),
- οριζόντιες (οπτικός άξονας επί ορίζοντα),
- ζενίθιες (όταν ο άξονας κατευθύνεται προς το ζενίθ).

Στα κυριότερα πλεονεκτήματα των κατακόρυφων αεροφωτογραφιών περιλαμβάνεται το γεγονός ότι η κλίμακα είναι σχεδόν η ίδια σε όλη την αεροφωτογραφία και μπορεί έως ένα βαθμό να υποκαταστήσει τον συμβατικό χάρτη. Παρόλα αυτά, τόσο οι κατακόρυφες όσο και οι πλάγιες αεροφωτογραφίες συνεισφέρουν σε όλες τις φάσεις της φωτοερμηνευτικής διαδικασίας για μία πληρέστερη και έγκυρη εξαγωγή χρήσιμων πληροφοριών (Σχήμα 1.2)15.

15 Doneus et all 2014, 84-96 & Παρχαρίδης 2015, 121-123.
Η κλίμακα αεροφωτογραφίας εκφράζει τον αριθμό των μονάδων πραγματικού μήκους στο έδαφος, οι οποίες αντιπροσωπεύονται από τις αντίστοιχες μονάδες της αεροφωτογραφίας. Στη πραγματικότητα η κλίμακα αεροφωτογραφίας δεν είναι ενιαία αλλά σημειακή, αφού είναι συνάρτηση του ύψους πτήσης, του ανάγλυφου, του εδάφους, της εστιακής απόστασης και της κλίσης της αεροφωτογραφίας. Για το λόγο αυτό όταν αναφερόμαστε σε κλίμακα αεροφωτογραφίας στη πραγματικότητα κάνουμε αναφορά στη μέση κλίμακα της αεροφωτογραφίας.

Αεροφωτογραφίες μεγαλύτερης κλίμακας καλύπτουν μικρότερη έκταση και τα αντικείμενα είναι μεγαλύτερα απ' ό,τι σε αεροφωτογραφίες μικρότερης κλίμακας.

Εικόνα 1.3. Παράδειγμα προσεγγιστικά μικρής 1:20.000 (αριστερά) και μεγάλης 1:1.000 (δεξιά) κλίμακας αεροφωτογραφίας της πόλεως των Τρικάλων (Google Earth, 2015).

Ο προσδιορισμός της κλίμακας μιας κατακόρυφης αεροφωτογραφίας γίνεται με διάφορες μεθόδους, όπως: α) της εστιακής απόστασης φακού - ύψος πτήσης πάνω από το έδαφος, β) των επίγειων μετρήσεων και γ) των μετρήσεων πάνω στο χάρτη16.

Σχήμα 1.3. Κλίμακα αεροφωτογραφίας και σημειακή κλίμακα.

1.2. Τύποι αεροφωτογραφιών

Οι αεροφωτογραφίες ανάλογα με τον τύπο του φίλμ ή/και του ψηφιακού αισθητήρα που χρησιμοποιείται, διακρίνονται στους παρακάτω τύπους:

Α) Ασπρόμαυρες παγχρωματικές:

Είναι οι αεροφωτογραφίες που χρησιμοποιούνται πιο περισσότερο. Το φίλμ που χρησιμοποιείται για την αποτύπωσή τους είναι ευαισθητοποιημένο στο ορατό μέρος του ηλεκτρομαγνητικού φάσματος. Στις ασπρόμαυρες παγχρωματικές αεροφωτογραφίες είναι δυνατόν να διακριθούν αντικείμενα που έχουν στην πραγματικότητα διαφορετικό χρώμα. Είναι δύσκολο όμως να διακριθούν, με βάση μόνο το τόνο του γκρι, χαρακτηριστικά όπως οι διάφοροι τύποι βλάστησης, γιατί η ευαισθησία του φιλμ στην πράσινη ακτινοβολία δεν είναι μεγάλη. Μετρήσεις επιφανειών, υψών αντικειμένων κ.λ.π. είναι δυνατές για να γίνουν με αποδεκτή ακρίβεια, εφόσον η κλίμακα των αεροφωτογραφιών βρίσκεται εντός ορισμένων ορίων. Επίσης, μπορούν να συλλέγουν αρκετές πληροφορίες μέσα από τις σκιαζόμενες επιφάνειες και από το νερό.

Β) Ασπρόμαυρες υπέρυθρες:

Στις αεροφωτογραφίες αυτές αποτυπώνεται το ορατό και ένα μέρος του υπερύθρου φάσματος στους τόνους του γκρι. Οι ασπρόμαυρες υπέρυθρες αεροφωτογραφίες είναι πολύ σημαντικές για τη χαρτογράφηση του περιβάλλοντος, αφού σε αυτές αποτυπώνονται με μεγάλη σαφήνεια οι διαφορετικοί τύποι βλάστησης. Όπως φαίνεται στην Εικόνα 2, η πλατύφυλλη βλάστηση ανακλά περισσότερα υπέρυθρη ακτινοβολία από τη κωνοφόρα βλάστηση και αποτυπώνεται με πιο φωτεινό τόνο από τα κωνοφόρα που αποτυπώνονται σκουρότερα. Επίσης, η προσβεβλημένη από ασθένειες πλατύφυλλη βλάστηση αποτυπώνεται με σκουρότερους τόνους από την υγιή. Περιοχές με καθαρό νερό καταγράφονται με πολύ σκούρο τόνο και έτσι γίνεται εύκολη η αποτύπωση και χαρτογράφηση του υδρογραφικού δικτύου και άλλων υδάτινων επιφανειών. Τέλος, οι σκιές των αντικειμένων είναι σχεδόν μαύρες στις υπέρυθρες αεροφωτογραφίες.

Εικόνα 1.4. Ασπρόμαυρη παγχρωματική (αριστερά) και υπέρυθρη (δεξιά) αεροφωτογραφία της ίδιας περιοχής (Μπαντέκας, 1980).
Γ) Έγχρωμες στο ορατό και έγχρωμες στο υπέρυθρο φάσμα

Το ανθρώπινο μάτι έχει τη δυνατότητα να διακρίνει 64 διαβαθμίσεις του γκρι και 20.000 χρωματικές αποχρώσεις. Το φιλμ που χρησιμοποιείται στις αεροφωτογραφίες αυτές είναι ευαίσθητος στη μπλε, πράσινη, κόκκινη και ανακλώμενη υπέρυθρη ακτινοβολία. Επίσης, είναι πολύ χρήσιμες για το προσδιορισμό των ειδών βλάστησης, τη διάκριση των υδάτινων επιφανειών και την χαρτογράφηση της περιεχόμενης υγρασίας στο έδαφος.\(^{17}\)

Δ) Σύγχρονες ψηφιακές εικόνες.

Η ψηφιακή φωτογραφία αποτελεί ίσως την τελευταία σημαντική εξέλιξη σε ότι αφορά την τεχνική της φωτογραφίας. Η διαφορά των ψηφιακών μηχανών από τις αναλογικές είναι πως δεν χρησιμοποιούν το κοινό "χημικό" φιλμ αλλά φωτοευαίσθητους αισθητήρες με κύριο υλικό κατασκευής τη σιλικόνη. Οι αισθητήρες αυτοί χαρακτηρίζονται από έναν αριθμό εικονοστοιχείων (pixels) και κάθε εικονοστοιχείο καταγράφει τις πληροφορίες σχετικά με το εισερχόμενο φως, την εύρεση, τον ύψος και την απόχρωση του. Οι πληροφορίες αυτές μεταφέρονται στα ηλεκτρονικά κυκλώματα της μηχανής και συνολικά παράγουν την τελική φωτογραφία.\(^{18}\)

Οι ψηφιακές εικόνες διακρίνονται σε δύο κατηγορίες:

- □ τις ψηφιογραφικές (ή αλλιώς χαρτογραφικές ή γραφικά πλέγματος) (bitmap ή raster graphics),
- □ και τις διανυσματικές (vector graphics).

Οι ψηφιογραφικές εικόνες ή πιο απλά τα γραφικά bitmap, δημιουργούνται από ένα σύνολο κουκκίδων που ονομάζονται εικονοστοιχεία (pixels – picture elements). Τα διανυσματικά γραφικά δημιουργούνται από επιμέρους σχήματα (π.χ. γραμμές, κύκλους, ορθογώνια) στα οποία εφαρμόζονται διάφοροι μαθηματικοί μετασχηματισμοί, διαφορετικά χρώματα και υφές.\(^{19}\)

Η ψηφιοποίηση (digitization) εικόνων είναι μετατροπή φωτογραφιών και σχεδίων από αναλογική μορφή (π.χ. τυπωμένες φωτογραφίες) σε ψηφιακή μορφή για περαιτέρω επεξεργασία. Η ψηφιοποίηση εικόνων γίνεται με τη βοήθεια σαρωτών ή απευθείας με τη χρήση ψηφιακών φωτογραφικών μηχανών. Κατά τη διαδικασία ψηφιοποίησης η αρχική πληροφορία μετατρέπεται σε ακολουθίες διαδικτύων ψηφιών. Ο τρόπος αναπαράστασης των ψηφιακών δεδομένων και ο αποθηκευτικός χώρος που απαιτείται, εξαρτάται από τη μορφή αποθήκευσης των δεδομένων, την ύπαρξη χρώματος και τις διαστάσεις της εικόνας. Το υλικό (hardware) ψηφιοποίησης, οι μορφοποιήσεις αρχείων για αποθήκευση εικόνων και ο τρόπος αναπαράστασης του χρώματος.\(^{20}\)

17 Περάκης 2015, 86.
18 Musgrove M., Nikon Says It’s Leaving Film-Camera Business, Washington Post Staff Writer Thursday, January 12, 2006
1.3. Πηγές αεροφωτογραφιών για την Ελλάδα

Οι κύριοι δημόσιοι φορείς προμήθειας αεροφωτογραφιών είναι η Γεωγραφική Υπηρεσία Στρατού (Γ.Υ.Σ.) και η ΕΚΧΑ (δηλαδή η πρώην Κτηματολόγιο ΑΕ). Κάθε ενδιαφερόμενος μπορεί να αποκτήσει αεροφωτογραφίες για προσωπικούς, εκπαιδευτικούς ή επαγγελματικούς σκοπούς. Επίσης, υπάρχουν ιδιωτικές εταιρείες που εκτελούν αεροφωτογράφισες περιοχών της Ελλάδος σε περιοδικότερη βάση και σε ποικίλες κλίμακες. Ωστόσο, η ολοένα και μεγαλύτερη χρήση των μη επανδρωμένων πτητικών μέσων δίνει στο χρήστη τη δυνατότητα ιδιωτικών αεροφωτογραφίσεων σε μεγαλύτερες κλίμακες.21

1.4. Αρχές της φωτογραμμετρικής επεξεργασίας

Στερεοσκοπία

Η εφαρμογή της στερεοσκοπίας σχετίζεται με τη στερεοσκοπική όραση ή την τρισδιάστατη παρατήρηση των αεροφωτογραφιών. Η ικανότητα στερεοσκοπικής παρατήρησης είναι ουσιώδης για την αποδοτικότερη χρησιμοποίηση των αεροφωτογραφιών, η οποία συνεπάγεται:

α) την οπτική διάκριση της τρίτης διάστασης των αντικειμένων και τη μέτρηση των διαφορών τους,

β) την ευκολότερη και ακριβέστερη αναγνώριση των αντικειμένων.

Η στερεοσκοπική παρατήρηση - αντίληψη του βάθους οφείλεται στη σύγκλιση των ματιών, ώστε να βλέπουν το ίδιο αντικείμενο.

Σχήμα 1.4. Σχέση μεταξύ της στερεοσκοπικής αντίληψης του βάθους και της γωνίας σύγκλισης.

Η στερεοσκοπική παρατήρηση αεροφωτογραφιών, δηλαδή η δημιουργία της τρισδιάστατης παρατήρησης των αντικειμένων, μπορεί να επιτευχθεί με τη χρησιμοποίηση ενός ζεύγους διαδοχικών μερικώς επικαλυπτόμενων αεροφωτογραφιών.

Εικόνα 1.6. Στερεοζεύγος αεροφωτογραφιών.

21 Γ.Υ.Σ. 2015.
Σ' ένα στερεοζεύγος υπάρχει συνήθως 60% κατά μήκος επικάλυψη και 35% κατά πλάτος επικάλυψη και η κοινή επικαλυπτόμενη περιοχή μπορεί να παρατηρηθεί τρισδιάστατα.

Τοιουτοπρόπως, τα στερεογράμματα είναι δύο φωτογραφίες του ίδιου αντικειμένου, οι οποίες πάρθηκαν από διαφορετική θέση την ίδια σχεδόν χρονική στιγμή και που έχουν τοποθετηθεί κατάλληλα για στερεοσκοπική παρατήρηση.

Σχήμα1.5: Κατά μήκος και κατά πλάτος επικάλυψη στερεοζεύγους.

Συνεπώς, απαραίτητη προϋπόθεση για τρισδιάστατη παρατήρηση είναι η ύπαρξη στερεοζεύγους ή στερεογραμμάτων, σε συνδυασμό με τον κατάλληλο εξοπλισμό:

- στερεοσκόπια (στερεοσκόπια φακών ή τσέπης, κατοπτρικά στερεοσκόπια και zoom στερεοσκόπια),
- στερεοσκοπικά γυαλιά που δείχνουν το μέθοδος του ανάγλυφου (μπλε-κόκκινο),
- ηλεκτρονικές διατάξεις με πόλωση (φίλτρα οθόνης για στερεοσκοπική παρατήρηση)\(^\text{22}\).

Εικόνα 1.7. Στερεοσκόπια, μέθοδος ανάγλυφου και ψηφιακός φωτογραμμετρικός σταθμός.

1.5. Υπολογισμός συντεταγμένων σημείων από μετρήσεις σε εικόνες

Το χαρακτηριστικό της κεντρικής προβολής κατά τη φωτογράφιση είναι ότι κάθε ακτίνα σημείου που φωτογραφίζεται διέρχεται από το κέντρο προβολής του φακού. Σε ένα ιδέατο σύστημα φακών, χωρίς παραμορφώσεις, όλες οι ακτίνες σημείων του αντικειμένου που φωτογραφίζεται περνούν από το κέντρο προβολής του φακού για να δημιουργηθούν τα ειδώλα των σημείων αυτών στον αισθητήρα της φωτογραφικής μηχανής.

Για τον υπολογισμό των τρισδιάστατων συντεταγμένων σημείων στο χώρο από μετρήσεις σε στερεοζεύγος εικόνες, η γενική μεθοδολογία περιλαμβάνει τα παρακάτω βήματα:

- τη χρήση στερεοσκοπικών εικόνων.
- τον εσωτερικό προσανατολισμό (γεωμετρία φωτομηχανής και συστήματος των φακών).
- τη βαθμονόμηση της φωτομηχανής.
- τον εξωτερικό προσανατολισμό (φωτογραμμετρική οπισθοτομία).
- τον υπολογισμό τρισδιάστατων συντεταγμένων σημείων (φωτογραμμετρική εμπροσθοτομία).

Ο εσωτερικός προσανατολισμός περιγράφει την εσωτερική γεωμετρία της φωτο-μηχανής και τη διαστροφή του συστήματος των φακών. Τα στοιχεία αυτά είναι απαραίτητα για την ανάληψη της δέσμης των φωτεινών ακτινών του αντικειμένου στο χώρο από τα αντίστοιχα σημεία της εικόνας. Οι παράμετροι του εσωτερικού προσανατολισμού είναι η εστιακή απόσταση, η θέση του κυρίου σημείου στο επίπεδο του αρνητικού ή του ψηφιακού αισθητήρα καθώς και οι διαστροφές του φακού. Η βαθμονόμηση της φωτομηχανής αποσκοπεί στην αντιστάθμιση των διαστροφών του φακού καθώς και στην εκτίμηση της σταθερότητας και λειτουργίας της.

Η θέση του κέντρου προβολής Χ0,Υ0,Ζ0 και οι στροφές των αξόνων ω, φ & κ του επίγειου συστήματος, ώστε να συμπέσουν με τους αξόνες του συστήματος συντεταγμένων της φωτομηχανής, αποτελούν στοιχεία της θέσης και του προσανατολισμού της φωτογραφικής λήψης στο επίγειο σύστημα συντεταγμένων. Ο προσδιορισμός των 6 παραμέτρων ονομάζεται εξωτερικός προσανατολισμός και περιγράφεται από τη συνθήκη της συγγραμμικότητας (Mikhail et al. 2001).

\[
\begin{align*}
x &= x_0 - c \frac{(X - X_0)R_{11} + (Y - Y_0)R_{12} + (Z - Z_0)R_{13}}{(X - X_0)R_{31} + (Y - Y_0)R_{32} + (Z - Z_0)R_{33}} \\
y &= y_0 - c \frac{(X - X_0)R_{21} + (Y - Y_0)R_{22} + (Z - Z_0)R_{23}}{(X - X_0)R_{31} + (Y - Y_0)R_{32} + (Z - Z_0)R_{33}}
\end{align*}
\]

Η παραπάνω συνθήκη της συγγραμμικότητας συνδέει τις φωτογραφικές συντεταγμένες x, y ενός σημείου της εικόνας στο φωτογραφικό επίπεδο, με τις εικόνες συντεταγμένες του X, Y, Z μέσω των παραμέτρων της εσωτερικής γεωμετρίας της φωτομηχανής c, x0 , y0, των συντεταγμένων στάσεως X0,Y0,Z0 της φωτομηχανής στο επίγειο σύστημα συντεταγμένων και των γωνιών στροφής ω, φ & κ ανάμεσα στα δύο τρισδιάστατα συστήματα συντεταγμένων (στοιχεία εξωτερικού προσανατολισμού). Με τη χρήση ενός στερεοζεύγους και τη μέτρηση των εικονοσυντεταγμένων του ιδίου σημείου στις δύο εικόνες, προκύπτουν δύο ξεύγη εξισώσεων της

παραπάνω μορφής που επιλύονται με τη μέθοδο των ελαχίστων τετραγώνων και υπολογίζουν τη θέση του σημείου στο χάρτο, δηλαδή τις συντεταγμένες. Η τεχνική αυτή ονομάζεται φωτογραμμετρική εμπροσθοτομία.

Επομένως, γνωρίζοντας τα στοιχεία του εξωτερικού προσανατολισμού, τα στοιχεία εσωτερικού προσανατολισμού και τις εικονοσυντεταγμένες του σημείου αποτύπωσης, υπολογίζονται οι συντεταγμένες του σημείου αποτύπωσης στο εκάστοτε γεωδαιτικό σύστημα αναφοράς.

1.6. Φωτογραμμετρικά προϊόντα

Ο τοπογραφικός χάρτης σε έντυπη μορφή αποτελεί το αρχικό συμβατικό φωτογραμμετρικό προϊόν. Μέρος των ψηφιακών γεωχωρικών δεδομένων αποτελούν τα φωτογραμμετρικά προϊόντα τα οποία χρησιμοποιούνται για κάθε είδους χαρτογραφική απεικόνιση με τη χρήση των Γεωγραφικών Συστημάτων Πληροφορίων (Γ.Σ.Π.). Ακολουθεί η περιγραφή των βασικών φωτογραμμετρικών προϊόντων με την κατηγοριοποίησή τους σε αναλογική ή ψηφιακή μορφή.

Α) Φωτογραμμετρικά προϊόντα αναλογικής μορφής

Αν και τα ψηφιακά φωτογραμμετρικά προϊόντα υπερισχύουν των συμβατικών σε αναλογική μορφή, εντούτοις τα τελευταία χρησιμοποιούνται ακόμη. Αυτά είναι τα παρακάτω:

1) Χάρτες ισοψηφίων

Ισοψηφική καμπύλη είναι ο γεωμετρικός τόπος των σημείων του εδάφους, τα οποία έχουν το ίδιο υψόμετρο (Εικόνα 1.8). Η υψομετρική διαφορά μεταξύ δύο διαδοχικών ισοψηφικών καμπυλών ονομάζεται ισοδιάσταση και είναι συνάρτηση της κλίμακας του χάρτη και του ανάγλυφου της περιοχής. Επομένως, όσο μικρότερη είναι η κλίμακα του χάρτη τόσο μεγαλύτερη είναι η ισοδιάστασή του. Για την εκτίμηση του μέγιστου ύψους πτήσης για την παραγωγή χάρτη με συγκεκριμένη ισοδιάσταση, χρησιμοποιείται ο συντελεστής C, που είναι ο λόγος του ύψους πτήσης προς την ισοδιάσταση.

Εικόνα 1.8: Απόσπασμα τοπογραφικού χάρτη (ισοψηφιές καμπύλες).

2) Χάρτες

Οι χάρτες απεικονίζουν γεωγραφικά χαρακτηριστικά όπως το οδικό δίκτυο, τα τοπωνύμια, τα διοικητικά όρια κ.λπ. Ο σκοπός δημιουργίας και η κλίμακα του χάρτη καθορίζουν την

24 Doneus et all 2016, 3-4.
πληροφορία την οποία θα περιέχει ο κάθε χάρτης. Συνήθως στα παραπάνω χαρακτηριστικά περιλαμβάνονται και οι ισοψείς για την παροχή της υψομετρικής πληροφορίας.

Εικόνα 1.9: Τμήμα χάρτη Γ.Υ.Σ. (Φ. Χ.ΓΟΥΜΕΡΟ: 1/50.000).

3) Ανηγμένες εικόνες

Οι ανηγμένες εικόνες αποτελούν ένα άλλο φωτογραμμετρικό προϊόν. Πρόκειται για την αναγωγή μιας πλάγιας αεροφωτογραφίας σε κατακόρυφη. Η ανηγμένη εικόνα απεικονίζει επίπεδα σε ορθή προβολή και έχει ενιαία κλίμακα. Εάν το έδαφος είναι σχετικά ομαλό, η ανηγμένη εικόνα χρησιμοποιείται ως χάρτης μικρής ακρίβειας.

4) Φωτομωσαϊκά

Τα φωτομωσαϊκά αποτελούν χάρτες μικρής ακρίβειας και κατασκευάζονται τοποθετώντας διαδοχικά στερεοζεύγη αεροφωτογραφιών για τη δημιουργία ενός συνολικού χάρτη της περιοχής μελέτης (Εικόνα 1.10). Για μεγαλύτερη ακρίβεια και συνοχή του μωσαϊκού παλαιότερα ήταν συχνή η χρήση ανηγμένων εικόνων αντί απλών αεροφωτογραφιών. Ωστόσο, στις μέρες μας ο παραπάνω τρόπος κατασκευής φωτομωσαϊκών είναι σπάνιος και πλέον αυτά κατασκευάζονται από ορθοφωτοχάρτες με τη χρήση φωτογραμμετρικών λογισμικών βάσει αυτόματων διαδικασιών.

Εικόνα 1.10: Φωτομωσαϊκό από στερεοζεύγη αεροφωτογραφιών.
Β) Φωτογραμμετρικά προϊόντα ψηφιακής μορφής

1) Ψηφιακά Μοντέλα Ανάγλυφου [Digital Elevation Models (DEM’s)]

Ενα από τα κοινά φωτογραμμετρικά προϊόντα είναι το Ψηφιακό Μοντέλο Ανάγλυφου [Digital Elevation Model (DEM)], το οποίο χρησιμοποιείται είτε σαν πρωτογενές δεδομένο ή για την παραγωγή ορθοφωτοχαρτών. Το Ψηφιακό Μοντέλο Ανάγλυφου αναπαριστά τα υψόμετρα της επιφάνειας της γης μέσω ενός συνόλου σημείων. Η αναπαράσταση του υψομέτρου γίνεται μέσω των τιμών φωτεινότητας ή με τη μέθοδο του σκιασμένου ανάγλυφου (Εικόνα 1.11). Η συνηθέστερη δομή ενός Ψηφιακού Μοντέλου Ανάγλυφου είναι η ψηφιδωτή μορφή (raster grid) με υψομετρική πληροφορία σε κάθε pixel. Η αξιοπιστία με την οποία αναπαριστάται η γήινη επιφάνεια εξαρτάται από τη διάσταση του pixel του Ψηφιακού Μοντέλου Ανάγλυφου και τον τρόπο υπολογισμού του υψομέτρου. Σύμφωνα με τα παραπάνω, τα Ψηφιακά Μοντέλα Ανάγλυφου αποτελούν διακριτές αναπαραστάσεις της γήινης επιφάνειας. Αυτό έχει ως μειονέκτημα όταν πρόκειται για μεγάλες εναλλαγές υψομέτρου στο έδαφος, ώστε αυτές να μην μπορούν να αναπαρασταθούν πιστά στα Ψηφιακά Μοντέλα Ανάγλυφου ψηφιδωτής μορφής 25.

Ο υπολογισμός ενός Ψηφιακού Μοντέλου Ανάγλυφου γίνεται αυτόματα με τη χρήση ειδικών λογισμικών ωστόσο, η αναπαράσταση συγκεκριμένων περιοχών (αστικές ή δασικές) ενδεχομένως να μην είναι ακριβής. Αυτό συνήθως οφείλεται στο χείρισμα των δεδομένων ή στα σφάλματα παρεμβολής και τελικά το μοντέλο διορθώνεται με την παρέμβαση του χρήστη.

Εικόνα 1.11 Διαφορετικές αναπαραστάσεις Ψηφιακού Μοντέλου Ανάγλυφου, τιμές φωτεινότητας (αριστερά) και μέθοδος σκιασμένου ανάγλυφου (δεξιά).

2) Ψηφιακά διανυσματικά δεδομένα

Τα ψηφιακά διανυσματικά δεδομένα αναπαριστούνται ως σημεία, γραμμές και πολύγωνα (Εικόνα 1.13). Στην πιο απλή τους μορφή τα ψηφιακά διανυσματικά δεδομένα αποτελούνται από τις συντεταγμένες σε δύο ή τρεις διαστάσεις για να περιγράψουν τη δομή τους. Συνήθως το δεδομένο αυτά συνοδεύονται από διάφορες περιγραφικές πληροφορίες. Για παράδειγμα, το οδικό δίκτυο ανήκει στην κατηγορία διανυσματικών δεδομένων γραμμικής μορφής. Περιγραφικά χαρακτηριστικά του οδικού δικτύου αποτελούν η ονομασία της οδού, η κατηγορία του δρόμου, ή ένας κωδικός αριθμός που να υποδηλώνει την κατηγορία του. Η αναπαράσταση κάθε διανυσματικού δεδομένου είναι συνάρτηση της κλίμακας απόδοσης. Για παράδειγμα η κατηγορία χάρτη κλίμακας 1:50.000 αναπαριστάται ως σημείο, ενώ στην κλίμακα 1:5.000 ως σειρά πολυγώνων.

Κατά τη διαδικασία ένωσης γραμμών για τη δημιουργία πολυγώνων συνήθως προκύπτουν λάθη ψηφιοποίησης. Αυτό συμβαίνει συνήθως όταν ένα πολύγωνο δεν είναι κλειστό ή όταν η γραμμή κλείσιματος του πολυγώνου είναι μεγαλύτερη από την κανονική. Αυτά τα λάθη διορθώνονται ένα προς ένα από τον χρήστη και η διαδικασία αυτή είναι ιδιαίτερα χρονοβόρα, ή ημιαυτόματα μέσω της τοπολογίας, μέθοδοι ιδιαίτερα ακριβή και λιγότερο χρονοβόρα.

Τοπολογία είναι μία μαθηματική διαδικασία που χρησιμοποιείται για να αναπαραστήσει τη σύνδεση, τη συνέχεια και τη γειτνίαση των χαρακτηριστικών στοιχείων ενός ψηφιακού χάρτη. Αρα μέσω της δόμησης, της χρήσης και του ελέγχου της τοπολογίας, διορθώνονται λάθη ψηφιοποίησης που αναφέρθηκαν παραπάνω.

3) Ορθοφωτοχάρτες

Μία φωτογραφία η οποία είναι ορθογραφική προβολή της περιοχής που απεικονίζει καλείται ορθοφωτογραφία ή ορθοεικόνα. Η κλίμακα μιας εικόνας είναι συνάρτηση του ύψους πτήσης και του ανάγλυφου της περιοχής εξαιτίας της κεντρικής προβολής. Στην ορθογραφική προβολή, οι ακτίνες προβολής κάθε σημείου είναι κάθετες σε ένα οριζόντιο επίπεδο αναφοράς που σημαίνει ότι το υψόμετρο κάθε σημείου δεν επηρεάζει την προβολική απεικόνισή της, άρα και ότι η κλίμακα στην εικόνα είναι συνεχής.

Απαραίτητη προϋπόθεση για την παραγωγή ορθοφωτογραφιών είναι η χρήση ενός ψηφιακού μοντέλου ανάγλυφου από το οποίο γίνεται η εξάλειψη του ανάγλυφου.

Ο εμπλουτισμός της ορθοφωτογραφίας με χαρτογραφικά στοιχεία όπως π.χ. συντεταγμένες και τοπονύμια ονομάζεται ορθοφωτοχάρτης (Εικόνα 1.14). Ο ορθοφωτοχάρτης είναι ιδιαίτερα χρήσιμος διότι περιλαμβάνει τη χαρτογραφική πληροφορία που εμπεριέχεται στους συμβατικούς χάρτες όπως επίσης και το σύνολο των πληροφοριών που περιέχει η αεροφωτογραφία προέλευσης.

26 Εθνικό Κτηματολόγιο.
27 Κτηματολόγιο Α.Ε. 2017.
28 Doneus et all 2016, 12-15.
Η τυποποίηση της φωτοερμηνευτικής γνώσης για ένα συγκεκριμένο αντικείμενο γίνεται με μια σειρά από ιδιότητες, τα φωτοερμηνευτικά χαρακτηριστικά, τα οποία είναι τα παρακάτω:

1. Φωτογραφικός τόνος

Ο φωτογραφικός τόνος του γκρι είναι μια παράμετρος για τη σχετική ποσότητα του φωτός που ανακάλυπται από ένα αντικείμενο και καταγράφεται από το συγκεκριμένο καταγραφικό όργανο (φωτογραφική μηχανή, πολυφασματικός σαρωτής, κ.ά.). Στις ασπρόμαυρες αεροφωτογραφίες ο τόνος κυμαίνεται από άσπρο έως μαύρο με ενδιάμεσες διαβαθμίσεις του γκρι. Το ανθρώπινο μάτι έχει την ικανότητα να διακρίνει μικρές αλλαγές του τόνου του γκρι (συνήθως μέχρι 64). Σε πολλές άλλες περιπτώσεις, πιο σημαντικό για τη φωτοερμηνεία δεν είναι ο τόνος του γκρι, αλλά η διαφορά τόνου. Ο τόνος ενός αντικειμένου δεν είναι πάντοτε ο ίδιος σε όλες τις αεροφωτογραφίες αλλά υφίσταται σημαντικές μεταβολές. Οι αιτίες των αλλαγών αυτών είναι οι εξής:

- Το είδος του καταγραφικού μέσου (εικονισθήσια φωτογραφικού φιλμ, κανάλι πολυφασματικού σαρωτή κ.ά.)
- Οι κλιματολογικές συνθήκες κατά τη στιγμή της λήψης των αεροφωτογραφιών.
- Όταν για παράδειγμα η γωνία του ήλιου είναι μικρή, τότε η προσπίπτουσα ακτινοβολία μειώνεται. Επομένως αναλόγα μειώνεται και η ανακλώμενη από τα αντικείμενα ακτινοβολία και κατ’ επέκταση η αποτύπωσή τους με σκουρότερους τόνους πάνω στο φιλμ.
- Οι τοπογραφικές συνθήκες της περιοχής.
- Η έκθεση και η κλίση του ανάγλυφου επηρεάζουν την ποσότητα της προσπίπτουσας και επομένως και της ανακλώμενης ακτινοβολίας. Επίσης, οι συνθήκες υγρασίας του εδάφους επηρεάζουν τον τόνο. Όσο περισσότερη είναι η υγρασία, τόσο σκουρότερος είναι ο τόνος.
- Η θέση του αντικειμένου πάνω στην αεροφωτογραφία.
- Όσο πιο μακριά είναι το αντικείμενο από το κέντρο της αεροφωτογραφίας, τόσο σκουρότερος είναι ο τόνος. Αυτό σε μεγάλο βαθμό διορθώνεται με τη χρήση αντισταθμιστικών φίλτρων.

Για τους παραπάνω λόγους, η ταξινόμηση των αντικειμένων με κριτήριο μόνο τις απόλυτες τιμές του τόνου εμπεριέχει τα στοιχεία της υποκειμενικότητας και γι’ αυτό πρέπει να χρησιμοποιείται με προσοχή.

Έχει αποδειχθεί ότι το ανθρώπινο μάτι έχει τη δυνατότητα να διακρίνει πολύ περισσότερες διαβαθμίσεις ενός χρώματος απ’ ότι το γκρι. Αυτό δείχνει ότι η δυνατότητα συλλογής λεπτομερειών από έγχρωμες αεροφωτογραφίες είναι πολύ μεγαλύτερη απ’ ότι στις ασπρόμαυρες. Επομένως, όπως στις ασπρόμαυρες αεροφωτογραφίες έτσι και στις έγχρωμες, η αντίθεση του χρώματος, η οποία μπορεί να μεταβληθεί μέσα σε ορισμένα ώριμα κατά την εκτύπωση του φιλμ, έχει μεγάλη σημασία για τη φωτοερμηνεία των αντικειμένων.

Η απόδοση του χρώματος επηρεάζεται από τους παραπάνω παράγοντες όπως για παράδειγμα ο τόνος του γκρι, με αποτέλεσμα τυχόν διαφορές να μην έχουν σε πολλές περιπτώσεις πρακτική αξία από πλευράς φωτοερμηνείας.

Εικόνα 1.15 Φωτογραφικοί τόνοι του γκρι.

2. Μέγεθος

Το μέγεθος ενός αντικειμένου είναι ένα από τα πιο σημαντικά ποσοτικά στοιχεία της φωτοερμηνείας. Το μέγεθος διακρίνεται σε σχετικό και απόλυτο. Ως σχετικό μέγεθος, καλείται το μέγεθος ενός αγνώστου αντικειμένου σε σχέση με ένα γνωστό. Το απόλυτο μέγεθος ενός αντικειμένου είναι επίσης σημαντικό στη φωτοερμηνεία και υπολογίζεται με φωτογραμμετρικές μεθόδους. Γενικά το μέγεθος εξαρτάται από την κλίμακα της αεροφωτογραφίας. Για παράδειγμα, το μέγεθος ενός θάμνου σε σχέση με το μέγεθος ενός δέντρου, ή ενός μονοπατιού σε σχέση με ένα δρόμο.

3. Σχήμα

Το σχήμα των αντικειμένων δίνει σημαντικές πληροφορίες στον φωτοερμηνευτή. Πολλά αντικείμενα αναγνωρίζονται εύκολα μόνο από το σχήμα τους μετά από μονοσκοπική ή στερεοσκοπική παρατήρηση των αεροφωτογραφιών. Το σχήμα των αντικειμένων επηρεάζεται από τη θέση που έχουν αυτά στην αεροφωτογραφία (κυρίως μεγάλης κλίμακας). Για παράδειγμα στην περίπτωση ενός κτιρίου που βρίσκεται στο κέντρο της αεροφωτογραφίας, παρατηρείται μόνο σε κάτωψη. Αν όμως το κτίριο βρίσκεται προς τα άκρα της αεροφωτογραφίας, τότε λόγω της τοπογραφικής μετατόπισης το κτίριο παρατηρείται υπό λοξή γωνία, οπότε φαίνεται και το ύψος του κτιρίου.

4. Σκιά

Οι σκιές των αντικειμένων αποτελούν ένα πολύ σημαντικό στοιχείο της φωτοερμηνείας. Το μέγεθος και το σχήμα της σκιάς εξαρτάται από το μέγεθος και το σχήμα του αντικειμένου. Το μέγεθος της σκιάς εξαρτάται επίσης και από τη θέση του ηλίου.

Στην περίπτωση όμως των αεροφωτογραφιών, το μέρος της σκιάς που φαίνεται εξαρτάται από το μέγεθος της τοπογραφικής μετατόπισης που υφίσταται το αντικείμενο και από τη θέση του αντικειμένου σε σχέση με το ναδίρ. Δηλαδή αν η θέση του αντικειμένου είναι με τρόπο ώστε η κατεύθυνση της μετατόπισης να συμπίπτει με την κατεύθυνση της σκιάς του, τότε ένα μέρος της ή ακόμα και ολόκληρη η σκιά καλύπτεται από το μετατοπισμένο αντικείμενο. Η ύπαρξη της σκιάς αφενός μεν διευκολύνει αφετέρου δε δημιουργεί προβλήματα στη φωτοερμηνεία.

Τα πλεονεκτήματα μπορεί να συνοψιστούν στα παρακάτω:

30 Philipson eds. 1997, 51.
31 Μπαντέκας 1980.
32 Λυριτζής 2008, 269.
Δύο δυνατή η μέτρηση του ύψους φυσικών και ανθρωπογενών χαρακτηριστικών.
Δύο δυνατή η αναγνώριση μεμονωμένων ή ομαδοποιημένων αντικειμένων.
Βελτιώνεται η αίσθηση του ανάγλυφου.
Αντίθετα τα μειονεκτήματα είναι τα εξής:
Δύο αδύνατη ή πολύ δύσκολη η σύλλογη πληροφοριών από τις περιοχές που καλύπτονται από σκιά. Η περίπτωση αυτή είναι αρκετά σοβαρή, γιατί ορισμένες φορές λόγω του ανάγλυφου ή του νέφους, καλύπτονται ολόκληρες περιοχές από τη σκιά.
Γίνεται υπερεκτίμηση της κάλυψης φυσικών και ανθρωπογενών χαρακτηριστικών από τη σκιά.

5. Φωτογραφική υφή

Υφή είναι η συχνότητα αλλαγών του τόνου σε μία αεροφωτογραφία, η οποία προκύπτει όταν ένας αριθμός πολύ μικρών αντικειμένων παρατηρούνται ως σύνολο. Διακρίνεται σε στιλπνή (επιφάνεια ήρεμου νερού), απαλή (γυμνό έδαφος), λεπτή (εγκαταλειμμένοι για χρόνια αγροί, αναγέννηση δάσους), τραχεία (πυκνό δάσος), κυματοειδής (επιφάνεια ελαφρώς ταραγμένης θάλασσας), γραμμική (καλλιέργειες σε γραμμική διάταξη) και κηλιδωτή.

Γενικά η υφή είναι το αποτέλεσμα του συνδυασμού του τόνου, του μεγέθους, του σχήματος και της σκιάς των «μικρών αντικειμένων». Λόγω της ασάφειας των ορίων η περιγραφική αυτή ταξινόμηση της υφής έχει μεγαλύτερη αξία όταν σε κάθε περίπτωση συνοδεύεται από φωτογραφικά παραδείγματα.

6. Διάταξη

Ως διάταξη ορίζεται η κατά χώρο διευθέτηση των αντικειμένων. Αυτή μπορεί να είναι φυσική ή ανθρωπογενής. Ο προσδιορισμός και η μελέτη της διάταξης γίνεται ευκολότερα στις αεροφωτογραφίες απ’ ότι στο έδαφος. Όταν η διάταξη είναι δύσκολο να αναγνωριστεί, όπως στη περίπτωση της πολύ μικρής κλίμακας αεροφωτογραφιών, τότε μιλάμε για φωτογραφική υφή.

7. Σχέση με το περιβάλλον/Συσχέτιση

Το στοιχείο αυτό δεν σχετίζεται με τα χαρακτηριστικά του αντικειμένου. Ο φωτοερμηνευτής συσχετίζει τα αντικείμενα ή τη θέση αυτών με άλλα αντικείμενα ή με τον περιβάλλοντα χώρο. Για παράδειγμα, η ύπαρξη κτιρίων μπορεί να βοηθήσει και να προσανατολίσει την αναγνώριση άλλων ανθρωπογενών κατασκευών (δρόμοι, μονοπάτια). Επομένως, η συσχέτιση αναφέρεται στην ερμηνεία που δίνουμε βασισμένη στη γνώση και στην εμπειρία μας κατά τη φωτοερμηνευτική διαδικασία.

33 Λυρίτζης 2008, 268-269.
Πολλά από τα παραπάνω φωτοερμηνευτικά χαρακτηριστικά έχουν σχετικές τιμές γιατί εξαρτώνται από άλλα χαρακτηριστικά όπως για παράδειγμα ο φωτογραφικός τόνος που εξαρτάται από το ύψος του ήλιου, τη στιγμή της λήψης, την εποχή κ.ά. 34.

1.8. Ερμηνεία των θερμικών εικόνων

Μια θερμική υπέρυθρη εικόνα μοιάζει με μια παχυρωματική εικόνα, με τη διαφορά ότι αυτή αντιπροσωπεύει την εκπεμπόμενη θερμική ενέργεια και όχι την ανακλώμενη ενέργεια. Οι θερμικές εικόνες απεικονίζουν την αντίθεση στις διαβαθμίσεις του γκρι, που προέρχονται από τη διαφορετική θερμική ενέργεια την οποία εκπέμπει κάθε σώμα. Οι ανοιχτότεροι τόνοι αναπαριστούν θερμές περιοχές, ενώ οι σκοτεινότερες τις ψυχρότερες περιοχές (Εικόνα 1.18).

Το νερό είναι θερμότερο από την επιφάνεια της Γης και ως εκ τούτου εμφανίζεται με πιο φωτεινούς τόνους στο επάνω δεξιά τμήμα της εικόνας.

Οι παραλλαγές στη φωτεινότητα στην ξηρά αφορούν τις μεταβολές στις θερμικές ιδιότητες και, σε μικρότερο βαθμό, στη τοπογραφία.

Αναλυτικότερα για τα διάφορα αντικείμενα ισχύει:

- Το νερό σε αντίθεση με το έδαφος: Οι υδάτινες μάζες είναι γενικά ψυχρότερες (σκοτεινές περιοχές) σε σχέση με το έδαφος κατά τη διάρκεια της ημέρας. Κατά τη διάρκεια της νύχτας συμβαίνει ακριβώς το αντίθετο, αφού η επιφανειακή θερμοκρασία αντιστρέφεται και έτσι το νερό είναι θερμότερο λόγω της μεγάλης θερμοχωρητικότητάς του, οπότε και εμφανίζεται με ανοιχτότερους τόνους του γκρι.
- Η βλάστηση: Τα δέντρα με κανονικό φύλλωμα συνήθως εμφανίζονται με σκούρους τόνους (ψυχρά) κατά τη διάρκεια της ημέρας και με ανοιχτότερους τόνους τη νύχτα (θερμά). Αυτό οφείλεται στο ότι η εξατμισοδιαπνοή είναι μέγιστη τις πρωινές ώρες, γεγονός που μειώνει τη θερμοκρασία των φύλων (λανθάνουσα απώλεια θερμότητας). Αυτός ο τύπος της βλάστησης εμφανίζεται θερμός τη νύχτα λόγω της μεγάλης περιεκτικότητας σε νερό και της αντιστροφής τζεστού αέρα από την επιφάνεια του εδάφους κατά τη διάρκεια της νύχτας προς τα φύλλα (ο κρύος αέρας από τα υψηλότερα στρώματα πηγαίνει κοντά στο έδαφος) (φράζες σε νερό και σκοτεινότερους τόνους του γκρι). Τα δέντρα γενικά δεν επηρεάζονται από τις θερμικές ιδιότητες του εδάφους. Το γρασίδι και άλλα χαμηλότερα φυτά είναι θερμότερα κατά τη διάρκεια της ημέρας, αλλά επηρεάζονται από τις θερμικές ιδιότητες του εδάφους.
- Συνεκτικά και μη συνεκτικά υλικά: Εκτεθειμένα πετρώματα στην επιφάνεια εμφανίζονται γενικά με διαφορετικές διαβαθμίσεις του γκρι λόγω της διαφορετικής τους θερμικής αδράνειας και της στάτης του ήλιου, τη στιγμή της λήψης, την εποχή κ.ά. 34.

θερμικής διαχυτικότητας. Στις ημερήσιες εικόνες, τα επιφανειακά πετρώματα εμφανίζονται με σκοτεινότερους τόνους από ότι τα μη συνεκτικά υλικά, ενώ το αντίθετο συμβαίνει στις νυχτερινές εικόνες.

- Επίπεδα υλικά: Υλικά όπως η άσφαλτος, το τσιμέντο και οι χωμάτινοι δρόμοι, εμφανίζονται σχετικά ζεστά (ανοιχτοί τόνοι) τόσο την ημέρα όσο και τη νύχτα. Είναι δηλαδή γενικά καλοί απορροφητής της ηλιακής ακτινοβολίας κατά τη διάρκεια της ημέρας και, επειδή έχουν μεγάλη θερμική αγωγιμότητα, έχουν την ικανότητα να εκπέμπουν θερμική ενέργεια για πολλές ώρες μετά τη δύση του Ηλίου. Λιγότερο φωτεινοί το βράδυ εμφανίζονται οι χωμάτινοι δρόμοι γιατί χάνουν πιο εύκολα τη θερμική τους ενέργεια.

- Μεταλλικές επιφάνειες: Οι γυμνές μεταλλικές επιφάνειες εμφανίζονται με σκούρους τόνους τόσο την ημέρα όσο και τη νύχτα εξαιτίας της χαμηλής θερμοκρασίας τους. Η λεία επιφάνεια τους παρουσιάζει πολύ μεγάλα ποσοστά ανάκλασης και μικρότερα απορρόφησης και εκπομπής, σε σχέση με άλλα σώματα, και συνεπώς εκπέμπουν πολύ λιγότερη θερμική ενέργεια.

- Πηγές υψηλής θερμοκρασίας: Η θερμική εκπομπή από σημεία όπως είναι το σημείο εκδήλωσης μιας πυρκαγιάς, έναν εν ενεργεία ηφαίστειο ή οι γεωθερμικές πηγές είναι σχετικά ανεπηρεάστατα κατά τη διάρκεια της ημέρας. Η εκπεμπόμενη θερμική ακτινοβολία παραμένει αρκετά σταθερή και έτσι αυτοί εμφανίζονται με πολύ έντονα ανοιχτούς τόνους όλο το 24ωρο.

- Καλυπτόμενα χαρακτηριστικά: Σε ορισμένες περιπτώσεις κάποια καλυμμένα χαρακτηριστικά ανιχνεύονται από τους θερμικούς δέκτες ακόμα και αν αυτοί δεν έχουν τη δυνατότητα «διείσδυσης» στην πληροφόρηση.

Για παράδειγμα, σε νυχτερινές θερμικές εικόνες μπορεί να ανιχνευτεί ένα ρέμα που βρίσκεται κάτω από πυκνή βλάστηση. Αυτό συμβαίνει γιατί η βλάστηση λαμβάνει τη θερμότητα που προέρχεται από το ρέμα και στη συνέχεια αυτή εκπέμπει θερμική ενέργεια που έμμεσα υποδηλώνει την ύπαρξη του ρέματος. Φαινόμενο των φαντασμάτων συγκεκριμένων σωμάτων μπορεί να εμφανιστεί σε μια θερμική εικόνα, όταν το αντικείμενο που δημιουργήσει μια διαφοροποίηση στη θερμοκρασία σε σχέση με το έδαφος έχει μετακινηθεί. Για παράδειγμα, αυτοκίνητα που είναι παρκαρισμένα σε άσφαλτο κατά τη διάρκεια της μέρας δημιουργούν ρέμα κατά τη διάρκεια της νύχτας και εμφανίζονται βρίσκονταν εκεί και δίνουν την εντύπωση ενός φαντάσματος.

35 Λυριτζής 2007, 533.
1. Αρχαιολόγοι ανακάλυψαν αρχαία πόλη στην Θεσσαλία.

Μια αρχαία πόλη ανακάλυψαν τυχαία αρχαιολόγοι των παν/μίων του Γκέτεμποργκ και του Μπούρμαουθ που βρίσκονταν στην Ελλάδα για ένα άλλο σχέδιο: Πρόκειται για μια αρχαία πόλη κοντά στο χωριό Βλοχός, στην Θεσσαλία. Ηδη ήταν γνωστά κάποια αρχαία ερείπια, που βρισκόταν στην επιφάνεια της γης, όμως κανείς δεν είχε ποτέ προβεί σε επίσημη καταγραφή τους - πόσο μάλλον σε ανασκαφές στο σημείο. Κι όμως, οι αεροφωτογραφίες δείχνουν καθαρά τον ιστό της πόλης, που οι επιστήμονες σήμερα πιστεύουν πως άκμασε τον 4ο ή 3ο π.χ αιώνα36.

2. Βρέθηκε το αρχαίο πολεμικό λιμάνι.

Μια σημαντική ανακάλυψη των αρχαιολόγων συμπληρώνει το παζλ ενός κοσμοϊστορικού γεγονότος. Στις ανατολικές ακτές της Σαλαμίνας, συγκεκριμένα στη περιοχή Αμπελακίου Κυνό-σουρας βρέθηκε το σημείο που συγκεντρώθηκε ο ελληνικός στόλος πριν από την ναυμαχία της Σαλαμίνας. Διακρίνεται στη θάλασσα ο μακρός τοίχος (βραχίονας), μήκους 160 μ. περίπου, στο βορειοδυτικό τμήμα του Όρμου του Αμπελακίου (Αεροφωτογραφία Β. Μεντόγιαννης). Ο γεωγράφος Σκύλακος, ο Στράβων και ο περιηγητής Παυσανίας είχαν αναφερθεί στο λιμάνι της Σαλαμίνας στα έργα τους. Εκεί συγκεντρώθηκε ένα τμήμα του ενωμένου Ελληνικού στόλου την παραμονή της μεγάλης ναυμαχίας του 480 π.χ. Η υποβρύχια έρευνα πραγματοποιήθηκε από την Εφορεία Εναλίων Αρχαιοτήτων (Ε.Ε.Α.) του Υπουργείου Πολιτισμού, το Ινστιτούτο Εναλίων Αρχαιολογικών Ερευνών (Ι.ΕΝ.Α.Ε.) και τη συμμετοχή του Εργαστηρίου Θαλάσσιας Γεωλογίας και Φυσικής Ωκεανογραφίας του Πανεπιστημίου Πατρών37.

36 http://www.protothema.gr/culture/article/636615/arhaiologoi-anakalupsan-hameni-arhaia-poli-stin-thessalia/
3. Αεροφωτογραφία των ερειπίων της Τροίας.\(^{38}\)

Εικόνα 1.19. Αεροφωτογραφία των ερειπίων της Τροίας με το ελληνορωμαϊκό θέατρο στα αριστερά της φωτογραφίας.

4. Εντοπίστηκε το Ασκληπιείο της Κύθνου.

Η έρευνα πραγματοποιήθηκε από το τμήμα Ιστορίας, Αρχαιολογίας και Κοινωνικής Ανθρωπολογίας του παν/μίου Θεσσαλίας, με τη συνεργασία της Εφορείας Κυκλάδων.

Ομάδα σπηλαιολόγων της ΣΠΕΛΕΟ εργάστηκε εθελοντικά στην έρευνα της δεξαμενής. Από πλευράς Εφορείας Αρχαιοτήτων υπεύθυνες ήταν οι αρχαιολόγοι Θεοδώρα Παπαγγελοπούλου και Μαρία Κουτσουμπού.\(^{39}\)

Εικόνα 1.20. Αεροφωτογραφία της αρχαίας πόλης της Κύθνου (Βρυόκαστρο). Στο μέσον πάνω ο χώρος της ανασκαφής.\(^{40}\)

38 http://yiorgosthalassis.blogspot.com/2012/09/blog-post_871.html
39 http://www.archaiologia.gr/blog/2017/01/10
40 Ξενικάκης και Γεσαφίδης, 2016.
5. Ναός αφιερωμένος στον Δία ανακαλύφθηκε στην Μητρόπολη της Ιωνίας.

Οι αρχαιολόγοι ανακάλυψαν ένα ναό που χτίστηκε προς τιμήν του Δία στην αρχαία ελληνική πόλη Μητρόπολη βρίσκεται κοντά στην περιοχή της Σμύρνης. Η αρχαία ελληνική πόλη εξερευνήθηκε σε ανασκαφές από το 1990 και βρίσκεται στις γειτονιές της περιοχής της Σμύρνης. Η ιστορία της πόλης χρονολογείται από το τέλος της Νεολιθικής Εποχής, που καλύπτουν τη Κλασική Περίοδο, την Ελληνιστική Εποχή, και τη Ρωμαϊκή και την Βυζαντινή. Μέχρι στιγμή, οι αρχαιολόγοι έχουν ανασκάψει ένα αρχαίο θέατρο, ένα κτίριο του Συμβουλίου, μια περίστυλη στοά, δύο δημόσια λουτρά, ένα αθλητικό συγκρότημα, μια αίθουσα διακοσμημένη με ψηφιδωτά, ένα σπίτι, καταστήματα, δημόσιες τουαλέτες & δρόμους από τη Ρωμαϊκή περίοδο.

Ο επικεφαλής στις ανασκαφές της Μητρόπολης, λέει ότι «οι αρχαιολόγοι έχουν ανακαλύψει μια περιοχή η οποία ήταν αφιερωμένη για την εκτέλεση τελετών θυσιών για τους Έλληνες θεούς»

6. Πίνδος: Άγνωστη αρχαία πόλη, σε υψόμετρο 1.200 μέτρων.

Ο αρχαιολογικός χώρος στο Καστρί (σε υψόμετρο 1.200 μ.) του Δήμου Γρεβενών, στις ανατολικές πλαγιές της Πίνδου, ανάμεσα στα χωριά Πολυνέρι και Αλατόπετρα αποτελεί από δεκαπενταετίας (1998-2015) το αντικείμενο της ανασκαφής ομάδας αρχαιολόγων του ΑΠΘ. «Αν και τα ευρήματα είναι πολλά και σημαντικά, εξακολουθούν πεισματικά να μένουν κρυμμένα το όνομα του θεού που λατρεύεται στον ναό και το όνομα της πόλης. Ωστόσο, όλα τα στοιχεία, η γεωγραφική θέση, τα ευρήματα ακόμη και τα χρόνια της ακμής της ακρόπολης στο τέλος του 4ου αι. π.χ. προδίδουν τη σημασία της μέσα στο ιστορικό πλαίσιο του βασιλείου της αρχαίας Μακεδονίας», τονίζει η ομότιμη καθηγήτρια Στέλλα Δρούγου.
Κεφάλαιο 2:
ΤΗΛΕΠΙΣΚΟΠΗΣΗ

Η Τηλεπισκόπηση ορίζεται ως η τεχνική απόκτησης πληροφοριών για τα αντικείμενα που βρίσκονται στη γήινη επιφάνεια, με βάση του νέους αισθητήρες που αναπτύχθηκαν, κυρίως σε δορυφόρους. Έτσι, η τηλεπισκόπηση μπορεί να αποδοθεί και ως η αναγνώριση ενός αντικειμένου από απόσταση. Η τηλεπισκόπηση διαφέρει από την επιτόπια παρατήρηση ή μέτρηση στο ότι στη δεύτερη το ειδικό όργανο παρατήρησης είναι μέσα ή εφάπατε του αντικειμένου που μετράμε ή ερευνάμε.

Οι μέθοδοι τηλεπισκόπησής χρησιμοποιούνται συχνά στην αρχαιολογία για την απόκτηση ακατέργαστων δεδομένων. Ωστόσο, παρά την αφθονία των τεχνικών που χρησιμοποιούν διαδοχικά σήματα για την παρακολούθηση της επιφάνειας της Γης από ψηλά, η αρχαιολογική τηλεπισκόπηση εξακολουθεί να βασίζεται κυρίως σε παθητική απεικόνιση με αέρα και χώρο στο οπτικό φάσμα ή την ενεργή τεχνική ανίχνευσης, γνωστή ως Airborne Laser Scanning (ALS) απόκτηση δεδομένων.

Οι Lillesand, Kiefer και Chipman (2003) ορίζουν τη τηλεπισκόπηση ως την επιστήμη και τέχνη του να επιτύγχανουμε πληροφορίες για αντικείμενο, περιοχή ή φαινόμενο, από την ανάλυση δεδομένων που αποκτήθηκαν από ένα μέσο το οποίο δεν είναι σε επαφή με το αντικείμενο, την περιοχή ή το φαινόμενο που εξετάζεται.

Η Τηλεπισκόπηση, στο ευρύτερο ορισμό της, μπορεί να συμπεριλάβει και ακουστικά (ή ηχητικά) κύματα που παράγονται κάτω από την επιφάνεια του νερού τα οποία μπορούν να καταγράφονται από ειδικούς αισθητήρες.

Τα βασικά στάδια του συστήματος της τηλεπισκόπησης περιλαμβάνουν:

- Εκπομπή ηλεκτρομαγνητικής ακτινοβολίας, (πηγή ο ήλιος ή αυτο-εκπομπή)
- Μετάδοση ενέργειας από την πηγή προς την επιφάνεια της Γης, καθώς και απορρόφηση και σκέδαση από την ανάτομη ατμόσφαιρα
- Αλληλεπίδραση της ηλεκτρομαγνητικής ακτινοβολίας με την επιφάνεια της Γης
- Μετάδοση της ακτινοβολίας από την επιφάνεια προς τον απομακρυσμένο αισθητήρα
- Δεδομένα εξόδου αισθητήρα
- Μετάδοση δεδομένων, επεξεργασία και ανάλυση

Μια βασική χρήση της τηλεπισκόπησης είναι να επεκτείνει την οπτική μας ικανότητα. Επιπλέον, η τηλεπισκόπηση μπορεί να βελτιώσει τη μνήμη μας, επειδή ο εγκέφαλος μας τείνει να μη θυμάται κάθε λεπτομέρεια σχετικά με το τι βλέπουμε. Με τη χρήση εικόνων τηλεπισκόπησης, μπορούμε να κάνουμε πολλά περισσότερα όπως για παράδειγμα να μετρήσουμε και να χαρτογραφήσουμε τις χωρικές διαστάσεις των αντικειμένων από εικόνες τηλεπισκόπησης. Επιπλέον, χρησιμοποιούμε την τεχνική της τηλεπισκόπησης μέσω των δεδομένων που παράγει για την παρακολούθηση της δυναμικής των φαινομένων στην επιφάνεια της Γης. Αυτά περιλαμβάνουν την παρακολούθηση της κατάστασης της βλάστησης και της ηπιότητας του περιβάλλοντος, τη

42 http://news.in.gr/culture/article/?aid=1500041743
43 Παρχαρίδης 2015, 5-14.
44 Veerhoeven G. & Vermeulen F. 2016, 1.
μέτρηση της θερμοκρασίας των διαφόρων αντικειμένων, την ανίχνευση και τον εντοπισμό των επιπτώσεων που προκαλούνται από πυρκαγιά, πλημμύρα, ηφαίστεια, σεισμούς κλπ. 46.

Η εξέλιξη της δορυφορικής τηλεπισκόπησης, μετά την εκτόξευση του πρώτου αμερικανικού δορυφόρου εξερεύνησης φυσικών πόρων LANDSAT 1 (Ιούνιος 1972), ήταν και συνεχίζει να είναι ραγδαία με εφαρμογές σε όλους τους κλάδους των Γεωεπιστημών και όχι μόνο. 47.

Η παρατήρηση και παρακολούθηση της Γης από το Διάστημα αποτελεί σήμερα σημαντικό εργαλείο για τη μελέτη του περιβάλλοντος, του σχεδιασμού αναπτυξιακών δράσεων και για τον εντοπισμό υπεδαφικών δομών οικονομικού ή αρχαιολογικού ενδιαφέροντος. 48.

Στην Ελλάδα η δορυφορική παρατήρηση της Γης αποτελεί αντικείμενο μελέτης και εφαρμογής εδώ και περίπου 30 χρόνια. Η Ελλάδα υπέγραψε την πρώτη συμφωνία συνεργασίας της με τον Ευρωπαϊκό Οργανισμό Διαστήματος το 1994 και από τον Δεκέμβριο του 2005, άρχισε να συμμετέχει στην υλοποίηση του ευρωπαϊκού διαστημικού προγράμματος. 49.

2.1. Φασματική υπογραφή των αντικειμένων – Φασματικές ταυτότητες

Τα φυσικά χαρακτηριστικά και η σύσταση κάθε αντικειμένου επηρεάζουν το ποσοστό της ηλιακής ακτινοβολίας που ανακλάται στα διάφορα μήκη κύματος με τον δικό τους χαρακτηριστικό τρόπο. Η ποσότητα και η φασματική κατανομή της ανακλώμενης και εκπεμπόμενης ακτινοβολίας από ένα αντικείμενο χρησιμοποιούνται ως μέσα αναγνώρισης του αντικειμένου αυτού, αναφερόμενα ως φασματική ταυτότητα ή φασματική υπογραφή του αντικειμένου και καταγράφονται από τους δέκτες των δορυφόρων που βρίσκονται σε τροχιά παρατήρησης της Γης. Κατ’ αυτόν τον τρόπο καταγράφεται και αναλύεται η συμπεριφορά στην ανάκλαση και στην εκπομπή ακτινοβολίας (ενέργειας με τη μορφή ακτινοβολίας) των διαφόρων αντικειμένων στην επιφάνεια της Γης, ώστε να διευκολύνει την επιλογή των κατάλληλων δεκτών και φασματικών ζωνών που θα βοηθήσουν καλύτερα στον εντοπισμό των αντικειμένων που μας ενδιαφέρουν και των ιδιοτήτων τους που μας ενδιαφέρουν. 50.

Εκτός από τις επιδράσεις με την ύλη, όπως η απορρόφηση, η ανάκλαση και η διάχυση, οι οποίες διαμορφώνουν την πληροφορία που συλλέγεται με τις μεθόδους τηλεπισκόπησης, ένας άλλος παράγοντας είναι η γωνία πρόσπτωσης της ηλιακής ακτινοβολίας, η οποία εξαρτάται από το ύψος του Ηλίου. Μια χρήσιμη ποσοτική έκφραση της ανάκλασης διαφορετικών αντικειμένων είναι η αλβεδό. Εκφράζει το ποσοστό της προσπίπτουσας ακτινοβολίας που ανακλάται από τα αντικείμενα. 51.

46 Παρχαρίδης 2015, 6-7.
47 Παρχαρίδης 2015, 12, 48-49.
48 Λυριτζής 2008, 198.
49 Παρχαρίδης 2015, 14.
51 Παρχαρίδης 2015, 29-30.
Εικόνα 2.1 Τυπικές καμπύλες φασματικής απόκρισης για διάφορα υλικά της γήινης επιφάνειας σε εύρος του ηλεκτρομαγνητικού φάσματος από 0,3 έως 12 περίπου μο

Ως εκ τούτου, το albedo επηρεάζει τον τρόπο με τον οποίο εμφανίζονται τα αντικείμενα κατά την παρατήρηση της Γης από το Διάστημα. Τα πλέον φωτεινά σημεία της είναι τα σύννεφα και τα πλέον σκοτεινά οι υδάτινες μάζες. Το albedo, χωρίς να αποτελεί σημαντική ιδιότητα των αντικειμένων, σε ότι αφορά την ανακλαστική τους ικανότητα, βοηθάει στην ερμηνεία της θερμοκρασίας ενός αντικειμένου (θερμός ή κρύος) κατά την έκθεσή του στον ήλιο. Γενικά, αντικείμενα με υψηλό albedo είναι καλοί ανακλαστήρες, ενώ με χαμηλό albedo είναι καλοί απορροφητές, δηλαδή θερμαίνονται και κρύωνουν αντίστοιχα ευκολότερα.

2.2. Όργανα καταγραφής και δορυφόροι παρατήρησης της Γης.

Δύο είναι τα βασικά δορυφορικά συστήματα παρακολούθησης και απεικόνισης της Γης:

1) Τα συστήματα τηλεπισκόπησης που καταγράφουν την «φυσική» ακτινοβολία ονομάζονται παθητικά. Για την ανακλώμενη ενέργεια αυτό συμβαίνει κατά τη διάρκεια της ημέρας όταν ο ήλιος φωτίζει τμήματα της Γης, ενώ δεν υπάρχει ανακλώμενη ενέργεια τη νύχτα. Η με φυσικό τρόπο εκπεμπόμενη ενέργεια (θερμικό υπέρυθρο) μπορεί να καταγραφεί ημέρα ή νύχτα και εφόσον το ποσό της ενέργειας είναι τέτοιο ώστε να είναι δυνατή η καταγραφή. Τα παθητικά συστήματα χρησιμοποιούν το τμήμα του φάσματος από πολύ μικρά μήκη κύματος (< 0,4 μμ) έως την περιοχή του μίκρους κύματος 1.000 μμ.

2) Τα ενεργητικά συστήματα είναι εκείνα που καταγράφουν τα ηλεκτρομαγνητικά κύματα που εκπέμπονται από κάποια άλλη εξωτερική πηγή ή από το ίδιο το άλλο άλλο θρέψη ή από το ίδιο το σύστημα καταγραφής. Συνήθως το σύστημα καταγραφής είναι αυτό που εκπέμπει και την ενέργεια προς την επιφάνεια, η οποία ανακλάται, επιστρέφει και καταγράφεται η «ηχή» του σήματος από το ίδιο το σύστημα. Χαρακτηριστικό παράδειγμα τέτοιου τύπου οργάνου είναι τα Radars που εκπέμπουν στην περιοχή των μικροκύματων. Η ανάγκη των ενεργών συστημάτων σε ενέργεια είναι μεγάλη και για τον λόγο αυτό η λειτουργία τους δεν είναι συνεχής.

52 Παρχαρίδης 2015, 36.
54 Παρχαρίδης 2015, 41.
2.3. Χαρακτηριστικά της τροχιάς των δορυφόρων

Η διαδρομή που ακολουθείται από έναν δορυφόρο γύρω από τη Γη ονομάζεται τροχιά. Η τροχιά σχετίζεται με τις δυνατότητες και τον στόχο για το οποίο τέθηκε σε τροχιά ο δορυφόρος. Η επιλογή της τροχιάς μπορεί να αλλάζει ως προς το ύψος, τον προσανατολισμό και την περιστροφή ως προς τη Γη. Οι δορυφόροι που έχουν τεθεί σε πολύ υψηλές τροχιές και στοχεύουν πάντοτε την ίδια περιοχή της Γης ονομάζονται γεωστατικοί δορυφόροι (Εικόνα 2.2).

Οι γεωστατικοί δορυφόροι βρίσκονται σε τροχιά περίπου στα 36.000 Km και περιστρέφονται με ταχύτητες όμοιες με την περιστροφή της Γης. Έτσι δίνουν την εντύπωση ότι είναι στατικοί σχετικά με την επιφάνεια της Γης. Αυτό επιτρέπει στον δορυφόρο να παρατηρεί και να συλλέγει πληροφορίες πάνω από συγκεκριμένες περιοχές. Γεωστατικοί είναι οι μετεωρολογικοί και τηλεπικοινωνιακοί δορυφόροι. Τα δορυφορικά συστήματα παρακολούθησης της Γης έχουν σχεδιαστεί ώστε να ακολουθούν μια τροχιά η οποία, σε συνδυασμό με την περιστροφή της Γης από τα δυτικά προς τα ανατολικά, επιτρέπει σε αυτά να καλύπτουν το μεγαλύτερο τμήμα της επιφάνειας με συγκεκριμένη χρονική στιγμή. Η τροχιά αυτή ονομάζεται σχεδόν πολική (Εικόνα 2.2), από την κλίση της τροχιάς που είναι σχεδόν B-N. Το είδος αυτό τροχιάς ονομάζεται και ηλιοσύγχρονη γιατί οι δορυφόροι καλύπτουν κάθε περιοχή της Γης σε μια σταθερή τοπική ώρα. Σε οποιοδήποτε γεωγραφικό πλάτος και μήκος και για την ίδια εποχή, ο Ήλιος θα έχει την ίδια θέση, καθώς καλύπτεται από τον δορυφόρο. Αυτό σημαίνει ότι ο φωτισμός παραμένει σταθερός και διευκολύνει τις συγκρίσεις διαχρονικά για την ίδια εποχή. Επίσης, η καταγραφή της επιφάνειας παρουσιάζει αλλαγές στον τρόπο που η ηλιακή ακτινοβολία φθάνει στη Γη και φωτίζει την επιφάνεια, ως προς το αζιμούθι και την ηλιακή γωνία ανύψωσης. Οι αλλαγές αυτές είναι εποχικές και αφορούν μόνο τα οπτικά συστήματα καταγραφής.\(^{(55)}\)

Εικόνα 2.2. Αριστερά η σχεδόν πολική τροχιά δορυφόρων και δεξιά η γεωστατική τροχιά\(^{(56)}\).

\(^{(55)}\) Παρχαρίδης 2015, 41-42.
\(^{(56)}\) Παρχαρίδης 2015, 41.
Ο όρος απομακρυσμένοι αισθητήρες περιλαμβάνει όλα τα όργανα ανίχνευσης και μέτρησης από απόσταση της ανακλώμενης ή εκπεμπόμενης ακτινοβολίας, καθώς και τα ανακλώμενα ακουστικά κύματα από απόσταση που βρίσκονται κάτω από τις υδατικές μάζες, στην περίπτωση των Sonar. Οι περισσότερες εφαρμογές της τηλεπισκόπησης απαιτούν πληροφορίες από πολλές διαφορετικές περιοχές φάσματος (πολυφασματική) που αποκτούνται με πολλαπλασιαστήρες ή έναν μεμονωμένο αισθητήρα που λειτουργεί ταυτόχρονα σε διαφορετικές φασματικές περιοχές.

Οι αισθητήρες καταγραφής (sensors) μπορούν να ταξινομηθούν:

- ανάλογα με τις διεργασίες ανίχνευσης (π.χ. φωτογραφικοί ή ψηφιακοί)
- ανάλογα με τη φασματική περιοχή λειτουργίας τους ή τον τρόπο λειτουργίας τους (π.χ. ενεργητικοί ή παθητικοί αισθητήρες).

Οι οπτικοί αισθητήρες λειτουργούν στην υπεριώδη, ορατή και υπέρυθρη περιοχή του φάσματος και όλοι χρησιμοποιούν για απεικόνιση στοιχεία ανάκλασης και επανεκπομπής.

Οι μικροκυματικοί αισθητήρες λειτουργούν σε φασματική περιοχή με μήκος κύματος ισοί ή μεγαλύτερο του χιλιοστού και χρησιμοποιούν την ακτινοβολία που οι ίδιοι εκπέμπουν διαθέτουν δηλαδή και πομπό και δέκτη.

Τα συστήματα απεικόνισης της γήινης επιφάνειας, δηλ. οι αισθητήρες, μπορούν να υποδιαιρεθούν σε τρεις βασικούς τύπους, τις κάμερες, τους σαρωτές και τα ραντάρ συνθετικού ανοίγματος.

Οι κάμερες και οι σαρωτές αποτελούν οπτικά συστήματα και είναι παθητικοί αισθητήρες, δηλ. καταγράφουν την ανακλώμενη ή εκπεμπόμενη «φυσική» ακτινοβολία (με πηγή ακτινοβολίας τον ήλιο), ενώ τα ραντάρ συνθετικού ανοίγματος αποτελούν ενεργητικούς αισθητήρες, δηλ. στέλνουν και δέχονται πίσω τα μικροκυματικά σήματα (αισθητήρας: πηγή και δέκτης της ακτινοβολίας).

Τα λαμβανόμενα από τον αισθητήρα σήματα καταγράφονται τόσο σε αναλογική όσο και σε ψηφιακή μορφή. Τα αναλογικά δεδομένα είναι υλικό τυπωμένο σε κάποιο φιλμ ή χαρτί (όπως οι αεροφωτογραφίες), ενώ τα ψηφιακά δεδομένα είναι υλικό που βρίσκεται σε δυαδική μορφή και μπορεί να το διαχειριστεί κάποιος σε έναν Η/Υ.

Για ορισμένα όργανα καταγραφής η απόσταση μεταξύ της γήινης επιφάνειας και του οργάνου καταγραφής παίζει καθοριστικό ρόλο στη λεπτομέρεια της πληροφορίας που καταγράφεται. Η ευδιάκριτη λεπτομέρεια σε μια εικόνα εξαρτάται από τη χωρική διακριτική ικανότητα του οργάνου καταγραφής και αναφέρεται στο μέγεθος του μικρότερου χαρακτηριστικού που μπορεί να ανιχνευθεί. Επίσης, η απόσταση μεταξύ του στόχου και της διαστημικής εξέδρας είναι καθοριστική για τη λεπτομέρεια της παραγόμενης εικόνας. Συνήθως σε δορυφόρους που βρίσκονται σε πολύ υψηλή τροχιά ενώ καταγράφουν μεγάλες περιοχές η διακριτική ικανότητα περιορίζεται...

Ανεξάρτητα από τη διακριτική ικανότητα ενός συστήματος, μικρά χαρακτηριστικά μπορούν να αναγνωριστούν εάν η φασματική τους απόκριση διαφέρει σημαντικά από τον περιβάλλοντα χώρο (π.χ. δρόμοι). Εάν ένα σύστημα καταγραφής έχει χωρική διακριτική ικανότητα 20 m τότε...
στην αντίστοιχη εικόνα κάθε εικονοστοιχείο (pixel) αντιπροσωπεύει μία περιοχή της επιφάνειας ίση με 20 X 20 m.

Ως χωρική διακριτική ικανότητα μιας εικόνας ή φωτογραφίας θεωρείται η ελάχιστη απόσταση μεταξύ δύο αντικειμένων στην οποία οι διαστάσεις τους φαίνονται χωριστά και καθαρά. Αντικείμενα που βρίσκονται σε πλησιέστερη απόσταση από αυτήν θα φαίνονται στην εικόνα ως ένα αντικείμενο. Η χωρική διακριτική ικανότητα εξαρτάται από την αντίθεση φωτεινότητας των αντικειμένων της εικόνας.

Ως αντίθεση φωτεινότητας ορίζεται ο λόγος της διαφοροποίησης στη φωτεινότητα, μεταξύ ενός αντικειμένου και των υπολοίπων που βρίσκονται γύρω του, ή του αθροίσματος των δύο αυτών φωτεινοτήτων, εκφραζόμενο επί τους εκατό και εξαρτάται από:

- το σχήμα των αντικειμένων ή των ιδιαίτερων χαρακτηριστικών τους
- τον λόγο του προσανατολισμού του μήκους σε σχέση με το πλάτος
- τον αριθμό των αντικειμένων σε μια περιοχή
- το άπλωμα (βαθμός που εκτείνεται) και η ομοιομορφία του γύρω χώρου

Στις δορυφορικές ψηφιακές εικόνες που παράγονται από σαρωτές ή τις κάμερες, η χωρική διακριτική ικανότητα ταυτίζεται με το «στοιχείο της εικόνας» (pixel) που είναι η «στοιχειώδης επιφάνεια» της Γης που καταγράφεται από τους δέκτες (Εικόνα 2.3)57.

Εικόνα 2.3: Χωρική διακριτική ικανότητα σε διαφορετικά δορυφορικά συστήματα58.

57 Sabins 1997, 494 & Παρχαρίδης 2015, 43-44.
58 Παρχαρίδης 2015, 50.
Πλεονεκτήματα και μειονεκτήματα των οργάνων καταγραφής

α) Οπτικά συστήματα:

Κάμερες: Πρόκειται για φωτογραφικές μηχανές που χρησιμοποιούν φιλμ, καλύπτουν το ορατό φάσμα και το κοντινό υπέρυθρο. Ο συνδυασμός φακών-φίλτρων-φιλμ και το ύψος λήψης διαμορφώνει το τελικό αποτέλεσμα, που είναι η εικόνα, ασπρόμαυρη ή έγχρωμη, αποτυπωμένη σε χαρτί ή σε φιλμ (θετικό ή αρνητικό).

Πλεονεκτήματα:

- Δεν απαιτούν πολύπλοκα λογισμικά επεξεργασίας
- Απαιτούν απλές γεωμετρικές διορθώσεις.
- Χαρακτηρίζονται από δυνατότητα μεγάλης χωρικής διακριτικής ικανότητας.
- Έχουν ευρύτατο στιγμιαίο πεδίο λήψης.

Μειονεκτήματα:

- Εξαρτώνται από τις καιρικές συνθήκες και την ηλιακή φωτεινότητα.
- Εμφανίζουν περιορισμό φασματικής ανάλυσης που καθορίζεται από τα φιλμ.
- Έχουν περιορισμένη λήψη εικόνας.
- Επιτρέπουν πολύ μικρή δυνατότητα βελτίωσης της εικόνας.
- Έχουν μεγάλη απώλεια πληροφόρησης κατά τη μετατροπή τους σε ψηφιακή μορφή μετά τη σάρωση.59

Σαρωτές (scanners): Πρόκειται για όργανα που παράγουν εικόνες σε διαφορετικά φασματικά κανάλια ταυτόχρονα, σαρώνοντας την επιφάνεια της Γης. Καλύπτουν το ορατό φάσμα και το υπέρυθρο.

Πλεονεκτήματα:

- Έχουν απεριόριστη λήψη δεδομένων.
- Παρουσιάζουν μεγάλη φασματική ανάλυση.
- Εμφανίζουν μεγάλη διακριτική ικανότητα.

Μειονεκτήματα:

- Παρουσιάζουν γεωμετρική παραμόρφωση που οφείλεται στη χρήση μηχανικών σαρωτών η οποία, αν και μικρή, δεν μπορεί να θεωρηθεί αμελητέα.
- Εμφανίζουν προβλήματα σχετικά με τη ραδιομετρική διαβάθμιση. Έχουν εξάρτηση από τις καιρικές συνθήκες και την ηλιακή φωτεινότητα.

β) Ραντάρ Συνθετικού Ανοίγματος (SAR): Ως επί το πλείστον είναι ενεργητικά συστήματα καταγραφής και καλύπτουν το μικροκυματικό φάσμα.

59 Παρχαρίδης 2015, 46.
Πλεονεκτήματα

- Δεν εξαρτώνται από τις καιρικές συνθήκες και την ηλιακή φωτεινότητα του γήινου περιβάλλοντος (λειτουργούν ημέρα και νύχτα με μερική ή ολική νεφοκάλυψη).
- Μπορούν να χρησιμοποιούν διάφορες φασματικές ζώνες αν και τα πιο πολλά συστήματα περιορίζονται σε μία ζώνη.

Μειονεκτήματα

- Ο Χρειάζονται αρκετό χρόνο και πολύπλοκα λογισμικά για την επεξεργασία των δεδομένων.
- Οι Απαιτούν σημαντικές γεωμετρικές διορθώσεις στις οποίες κρίνεται αναγκαία η χρήση DEM (Ψηφιακών Υψομετρικών Μοντέλων).
- Απαιτούν χρήση υψηλών χορηγιών για την χρήση τους.
- Ενδέχεται να παρέχουν πολυφασματικά δεδομένα (με εξαίρεση πειραματικές πτήσεις και διαστημικά λεωφορεία)61.

60 Παρχαρίδης 2015, 58.
61 Παρχαρίδης 2015, 47.
62 Παρχαρίδης 2015, 70.
2.5. Συνδυασμός φασματικών ζωνών – Σύνθετες ψευδέγχρωμες εικόνες (FCC)

Ο συνδυασμός διαφόρων φασματικών καναλιών οδηγεί στη δημιουργία πολυφασματικών εικόνων με βελτιωμένη ευαισθησία στη φασματική ανάκλαση ή χρωματική διαφοροποίηση μεταξύ επιφανειακών αντικειμένων που συχνά είναι δύσκολο να ανιχνευτούν στα επιμέρους φασματικά κανάλια. Η ανθρώπινη αντίληψη για τα χρώματα προέρχεται από το σχετικό συστήμα ακτινοβολίας, στο ερυθρό, πράσινο και μπλε τμήμα, που μετατρέπεται από το αισθητήριο όργανο, το μάτι. Το ερυθρό, το πράσινο και το μπλε μπορούν να προστεθούν και να παράγουν μεγάλο αριθμό χρωμάτων. Τα τρία αυτά χρώματα ονομάζονται κύρια χρώματα. Ο τρόπος εμφάνισης εικόνων, στηριζόμενος στη λογική των κύριων αυτών χρωμάτων, ονομάζεται σύστημα RGB (Red Green Blue) (Εικόνα 2.6). Στην πολυφασματική έγχρωμη δορυφορική εικόνα, κάθε εικονοστοιχείο λαμβάνει ένα χρώμα από τη σύνθεση των τριών βασικών χρωμάτων ερυθρό (R), πράσινο (G) και μπλε (B). Η ένταση κάθε χρώματος κυμαίνεται από 0 έως 255. Τα διαστημικά συστήματα συλλέγουν και αποθηκεύουν την πληροφορία από ένα περιορισμένο εύρος μήκους κύματος το οποίο καλείται φασματικό κανάλι ή φασματική ζώνη. Υπάρχει η δυνατότητα ενσωμάτωσης και εμφάνισης της πληροφορίας ενός αριθμού φασματικών καναλιών (συνήθως τριών) συνδεόμενα με τα τρία βασικά χρώματα, ερυθρό (R), πράσινο (G), μπλε (B). Η πληροφορία για κάθε κανάλι εμφανίζεται με ένα από τα βασικά χρώματα και εξαρτάται από τη σχετική φωτεινότητα (ψηφιακή τιμή) του κάθε εικονοστοιχείου.

Εικόνα 2.6: Προσθετικό Μοντέλο Χρωμάτων 63.

Η πρόσθεση χρωμάτων συμβαίνει όταν αναμίξουμε ένα βασικό χρώμα με κάποιο άλλο. Για παράδειγμα, εάν εστιάσουμε στο ίδιο σημείο (λευκός τοίχος) μια δέσμη πράσινου φωτός και μια δέσμη κόκκινου, αυτό που θα προκύψει είναι μια απόχρωση του κίτρινου χρώματος, και εάν προσθέσουμε και μια δέσμη μπλε φωτός, τότε το σημείο εκείνο θα έχει λευκό χρώμα. Ο τρόπος λειτουργίας των υπολογιστών στη δημιουργία των χρωμάτων στην οθόνη είναι ακριβώς ο ίδιος.

2.6. Αρχές ερμηνείας δορυφορικών εικόνων και ψηφιακών αεροφωτογραφιών.

Η τηλεπισκόπηση τα τελευταία χρόνια εξελίχθηκε σε ένα σημαντικό εργαλείο για τη μελέτη των χαρακτηριστικών της γήινης επιφάνειας. Δεν πρόκειται για κάποια μαγική τεχνική που μπορεί να λύσει κάθε πρόβλημα, αλλά για μια νέα τεχνική η οποία χρησιμοποιείται σε συνεργασία με άλλες «παραδοσιακές» τεχνικές.

63 CCRS, 1998.
Οι παρατηρήσεις υπαίθρου ήταν και θα είναι αναγκαίες και δεν πρόκειται να αντικατασταθούν πλήρως από την τηλεπισκόπηση. Όμως η συλλογή δεδομένων στην ύπαιθρο απαιτεί πολύ χρόνο και μεγάλο κόστος, ενώ τα δεδομένα της τηλεπισκόπησης μπορεί να καταγράφουν δεδομένα σε πολύ μικρό σχετικά χρόνο.

Ο χρήστης μπορεί, με τη βοήθεια των δεδομένων παρακολούθησης της γης, να αποκτήσει μια ολοκληρωμένη και γρήγορη εικόνα της ευρύτερης περιοχής που μελετά, σε σχέση με αυτήν που μπορεί να έχει στην ύπαιθρο, μειώνοντας έτσι σημαντικά τον χρόνο και το κόστος που απαιτείται κατά τις εργασίες υπαίθρου. Επίσης, τα δεδομένα τηλεπισκόπησης μπορούν να δώσουν πληροφόρηση για δύσβατες περιοχές που δύσκολα μπορούν να προσεγγιστούν.

Οι κύριοι παράγοντες που καθιστούν τα δορυφορικά δεδομένα σημαντικά και αξιόπιστα για τη μελέτη και τον έλεγχο των φυσικών πόρων είναι η συνοπτική εικόνα του χώρου που αποδίδουν, ο οποίος μπορεί να περιλαμβάνει χιλιάδες τετραγωνικά χιλιόμετρα, η συχνή και επαναλαμβανόμενη κάλυψη της περιοχής, η οποία επιτρέπει την παρατήρηση μικρών εποχικών αλλαγών, η συλλογή δεδομένων σε επιλεγμένα τμήματα του ηλεκτρομαγνητικού φάσματος και η δυνατότητα να αποδίδονται τα δεδομένα τους τόσο σε ψηφιακή όσο και σε αναλογική μορφή.

Η μεθοδολογία επεξεργασίας μιας εικόνας βασίζεται σε δύο βασικά βήματα, την ανάλυση και την ερμηνεία. Η διαφορά μεταξύ ανάλυσης και ερμηνείας έγκειται στο ότι:

• Η ανάλυση είναι ο διαχωρισμός ή διάσπαση ενός συνόλου στα τμήματά του.

• Η ερμηνεία, η οποία ακολουθεί την ανάλυση, είναι η επεξήγηση της σημασίας κάθε τμήματος της εικόνας αναφορικά με το σύνολό της και ο συσχετισμός των φασματικών και χωρικών ιδιοτήτων των διαφόρων χαρακτηριστικών δεδομένων που την αποτελούν. Η ανάλυση αεροφωτογραφιών και δορυφορικών εικόνων είναι η διαδικασία διάκρισης των φυσικών και ανθρωπογενών χαρακτηριστικών που είναι αποτυπωμένα σε αυτές.

Η αναγνώριση και καταγραφή των χαρακτηριστικών αυτών ονομάζεται ποιοτική ανάλυση, ενώ ο καθορισμός της γεωμετρίας τους στον χώρο ονομάζεται ποσοτική ανάλυση.

Η ποιοτική ανάλυση λέγεται φωτοερμηνεία, ενώ η ποσοτική φωτογραμμετρία.

Στη φωτοερμηνεία σημαντικό ρόλο παίζουν οι υποκειμενικοί παράγοντες, όπως η οξύτητα όρασης και αντίληψης του ερευνητή. Σημαντικό επίσης ρόλο παίζουν και οι αντικειμενικοί παράγοντες, όπως είναι η ποιότητα των δεδομένων καθώς και η τεχνική που ακολουθείται.

Τα βασικά είδη δεδομένων στα οποία εφαρμόζεται η φωτοερμηνεία είναι τα ακόλουθα:

- Αεροφωτογραφίες
- Παγχρωματικές δορυφορικές εικόνες
- Πολυφωσμιατικά δορυφορικά δεδομένα

64 Travaglia 1989, 85-97.
Ηλεκτρομαγνητική Μέθοδος (Γεωραντάρ)

Η αρχή λειτουργίας του γεωραντάρ στηρίζεται στην εκπομπή ηλεκτρομαγνητικών παλμών από έναν πομπό που διαδίδονται στο υπέδαφος. Όταν τα ηλεκτρομαγνητικά κύματα συναντήσουν μια διαχωριστική επιφάνεια μεταξύ δύο μέσων με διαφορετικές διηλεκτρικές ιδιότητες, τότε ένα μέρος της ενέργειας τους ανακλάται από τη διεπιφάνεια και η υπολειπόμενη ενέργεια του παλμού διέρχεται από τη διεπιφάνεια προς το βαθύτερο υλικό.

Το ποσοστό, λοιπόν, του ηλεκτρομαγνητικού σήματος που ανακλάται από μία διεπιφάνεια μεταξύ δύο διαφορετικών μέσων εξαρτάται από την αντίθεση των διηλεκτρικών ιδιοτήτων τους. Το πλάτος του ανακλώμενου κύματος δίνεται από τον συντελεστή ανάκλασης R, ο οποίος, αν θεωρήσουμε ένα μη αγώγιμο υλικό με παραμαγνητικές ιδιότητες, μπορεί να προσδιοριστεί προσεγγιστικά από την ακόλουθη σχέση:

$$ R \approx \frac{v_2 - v_1}{v_2 + v_1} \frac{\sqrt{\varepsilon_{r_1}} - \sqrt{\varepsilon_{r_2}}}{\sqrt{\varepsilon_{r_1}} + \sqrt{\varepsilon_{r_2}}} $$

(όπου v_1 και v_2 είναι οι ταχύτητες διάδοσης του ηλεκτρομαγνητικού κύματος στα δύο μέσα και ε_{r_1} και ε_{r_2} είναι οι σχετικές διηλεκτρικές σταθερές τους.)

3.1. Υπολογισμός βάθους ανακλαστικής διεπιφάνειας

Η μέθοδος του γεωραντάρ ή αλλιώς μέθοδος ηλεκτρομαγνητικής ανάκλασης μετράει και καταγράφει τον χρόνο διαδρομής (σε μολύβι) του ηλεκτρομαγνητικού κύματος και την ισχύ του ανακλώμενου σήματος που επιστρέφει στον δέκτη.

Το βάθος μιας ανακλαστικής διεπιφάνειας (ή αλλιώς ανακλαστήρα ή στόχου) από όπου προέρχεται μια καταγραφόμενη ανάκλαση του ηλεκτρομαγνητικού κύματος μπορεί να υπολογιστεί με βάση τον χρόνο διπλής διαδρομής του ηλεκτρομαγνητικού σήματος από και προς τον πομποδέκτη (χρόνος καθόδου από τον πομπό στον ανακλαστήρα και ανόδου από τον ανακλαστήρα στον δέκτη), σύμφωνα με την παρακάτω εξίσωση:

$$ d = \frac{vt2WTT}{2} $$

(όπου d είναι το βάθος της ανακλαστικής επιφάνειας (ή στόχου), t η ταχύτητα διάδοσης του ηλεκτρομαγνητικού κύματος στο υλικό και $2WTT$ το διπλό διαστήματος του κύματος).

Στον πίνακα που ακολουθεί παρατίθενται οι προσεγγιστικές τιμές της σχετικής διαπερατότητας ε_r, της ηλεκτρικής ισχυόφορτης και της ταχύτητας διάδοσης των ηλεκτρομαγνητικών κυμάτων για διάφορους τύπους υλικών.

66 Λυριτζής 2007, 492-495.
3.2. Συχνότητα λειτουργίας και διακριτική ικανότητα ενός γεωραντάρ

Η κεραία αποτελεί το βασικότερο στοιχείο ενός γεωραντάρ. Υπάρχουν διάφοροι τύποι κεραιών, ωστόσο οι πιο διαδεδομένες είναι οι διπολικές κεραίες. Τα διπολικά στοιχεία περικλείονται συνήθως σε μεταλλικό κέλυφος το οποίο είναι θωρακισμένο και δρα ως προστατευτικό κάλυμμα για εξάλειψη πιθανών εξωτερικών ανακλάσεων υπέρ του εδάφους και την αποφυγή διάδοσης επιφανειακών κυμάτων (αέρας). Τα εσωτερικά τους τοίχωμα είναι επικαλυμμένα με απορροφητικό υλικό για απορρόφηση των ηλεκτρομαγνητικών κυμάτων και την ελαχιστοποίηση ανεπιθύμητων εσωτερικών ανακλάσεων, εξασφαλίζοντας τη μέγιστη συγκέντρωση της ηλεκτρομαγνητικής ακτινοβολίας προς τα κάτω (έδαφος)68. Η διάρκεια και κυματομορφή του πηγαίου παλμού που παράγεται από τον πομπό (\(T_x\)) εξαρτάται από την κεντρική συχνότητα λειτουργίας της κεραίας, η οποία για τυπικές διατάξεις γεωραντάρ κυμαίνεται συνήθως από 10 – 10.000 MHz69. Η συχνότητα εκπομπής της κεραίας επηρεάζει τη διακριτική ικανότητα τόσο κατά την οριζόντια όσο και την κατακόρυφη έννοια, η οποία εξαρτάται από το μήκος κύματος του ηλεκτρομαγνητικού σήματος. Επιπλέον το βάθος της διασκόπησης επηρεάζεται και αυτό από τη συχνότητα και είναι αντιστροφώς ανάλογο της διακριτικής ικανότητας. Συγκεκριμένα, όσο υψηλότερη είναι η κεντρική συχνότητα λειτουργίας της κεραίας, τόσο βραχύτερης διάρκειας και στενότερου εύρους είναι ο παλμός παρέχοντας υψηλότερη διακριτική ικανότητα ανάχυψης μεταξύ δύο σημείων του υπεδάφους. Ωστόσο, δεδομένου ότι η εξασθένιση του ηλεκτρομαγνητικού σήματος αυξάνει με τη συχνότητα, τα υψίστα κύματα δεν μπορούν να διεισδυσουν σε μεγάλα βάθη, με αποτέλεσμα το βάθος διασκόπησης να είναι μικρότερο. Το αντίθετο συμβαίνει όταν χρησιμοποιείται κεραία χαμηλότερης κεντρικής συχνότητας, όπου στην περίπτωση αυτή το βάθος διείσδυσης είναι μεγαλύτερο με σαφή όμως μείωση στην ανάλυση που επιτυγχάνεται.

68 Λυριτζής 2007, 494.
69 Λυριτζής 2007, 492.
Με βάση τα παραπάνω είναι κατανοητό ότι η επιλογή της κατάλληλης συχνότητας λειτουργίας της κεραίας εξαρτάται από τον σκοπό της έρευνας και τις απαιτήσεις της εκάστοτε εφαρμογής ελέγχου με γεωραντάρ 70.

Η κατακόρυφη ανάλυση ορίζεται ως ο ελάχιστος κατακόρυφος διαχωρισμός που οφείλουν να έχουν δύο διακριτοί ανακλαστήρες προκειμένου να είναι ανιχνεύσιμοι με δεδομένη κεραία, και ο οποίος συνήθως θεωρείται ότι είναι ίσος προς το 1/4 του μήκους κύματος που αντιστοιχεί στην κεντρική συχνότητα της κεραίας.

Συγκεκριμένα, η χρονική διαφορά μεταξύ των δύο στόχον πρέπει να είναι μεγαλύτερη από το μισό του πλάτους του παλμού W.

Εάν θεωρήσουμε δύο στόχους 1 και 2 (Εικόνα 3.1) για τους οποίους οι χρόνοι διαδρομής δίνονται αντίστοιχα από τις παρακάτω σχέσεις:

\[t_1 = \frac{2d}{v} \land t_2 = \frac{2d + 2r}{v} \]

τότε η χρονική διαφορά \(\Delta t \) μπορεί να υπολογιστεί με βάση την εξίσωση:

\[\Delta t = \frac{2r}{v} \]

και συνεπάγεται μία ελάχιστη κατακόρυφη απόσταση \(\Delta r \) για την οποία θα ισχύει 71:

\[\frac{W}{2} = \frac{2r}{v} \Delta r \Delta \frac{v.W}{4} \]

Όσον αφορά την οριζόντια ανάλυση, οι αντίστοιχοι χρόνοι διαδρομής για τους δύο στόχους δίνονται από τις παρακάτω σχέσεις και, αν θεωρήσουμε ότι το \(\Delta l \) είναι μικρό σε σχέση με το \(d \), τότε η χρονική διαφορά \(\Delta t \) υπολογίζεται από την εξίσωση:

\[t_1 = \frac{2d}{v} \land t_2 = \frac{2\sqrt{d^2 + \Delta l^2} - d}{v} \Delta t \approx \frac{\Delta l^2}{v.d} \]

Η οριζόντια ανάλυση αποτελεί συνάρτηση του πλάτους του παλμού, της ταχύτητας διάδοσης του σήματος και της απόστασης των στόχων από τις κεραίες πομπού και δέκτη:

\[\Delta l \geq \frac{\sqrt{v.d.W}}{2} \]

Εικόνα 3.1. Κατακόρυφη (αριστερά) και οριζόντια (δεξιά) ανάλυση συστήματος γεωραντάρ.

Εικόνα 3.2: α) Απεικόνιση της διάταξης λειτουργίας του Γεωραντάρ
β) Δισδιάστατη τομή καταγραφής του ανακλώμενου σήματος.

3.3. Εφαρμογές της μεθόδου του γεωραντάρ
Η χρήση της γεωφυσικής μεθόδου του γεωραντάρ απαντάται ευρύτατα σε μεγάλο πλήθος εφαρμογών και σε διάφορους ερευνητικούς τομείς και κλάδους επιστημών όπως:

Γεωλογικές-Περιβαλλοντικές μελέτες
Στις εν λόγω έρευνες, λόγω του ότι απαιτούνται μεγάλα βάθη διασκόπησης, χρησιμοποιούνται συνήθως κεραίες χαμηλών κεντρικών συχνοτήτων (χαμηλότερες των 500 MHz) για:

✓ τη χαρτογράφηση γεωλογικών δομών και βυθισμάτων,
✓ τη χαρτογράφηση ιζηματογενών ακολουθιών και τη διάκριση ιζηματογενών περιβαλλόντων,
✓ τον έλεγχο κοιτασμάτων και αξιολόγηση ορυκτών πόρων,
✓ την ανίχνευση εγκοίλων, ρηγμάτων και τη χαρτογράφηση επιπέδων ασυνεχειών,
✓ την ανίχνευση και εκτίμηση του βάθους υδροφόρων οριζόντων,
✓ τη χαρτογράφηση ρυπασμένων υπεδαφικών ζώνων (π.χ. μολυσμένων υπόγειων υδάτων),
✓ τον εντοπισμό θαμμένων αντικειμένων όπως βυτίων, καλωδίων και αγωγών,
✓ την ανίχνευση διαρροών αερίου κ.ά.72.

Ελέγχος κατασκευών (οδοποιία, γέφυρες, τούνελ, κτίρια)

Ιδιαίτερης σημασίας είναι η εκτεταμένη εφαρμογή που βρίσκει η μέθοδος του γεωραντάρ στον ελέγχο της κατάστασης και αποτίμησης της δομικής αρτιότητας διαφόρων κατασκευών όπως οδοστρωμάτων, επενδύσεων σηράγγων και υπονόμων, τοιχοποιιών, γεφυρών κλπ. Στις επιθεωρήσεις αυτές, λόγω του ότι η διακριτική ικανότητα είναι σημαντικότερη από το βάθος διασκόπησης, απαιτείται η χρήση κεραίων υψηλών συχνοτήτων της τάξης των 500 MHz και άνω, οι οποίες μπορούν να παρέχουν σημαντικές πληροφορίες για:

1) τον προσδιορισμό της θέσης και της διάταξης του μεταλλικού οπλισμού στο σκυρόδεμα και την αποτίμηση της ακεραιότητας του οπλισμένου σκυροδέματος,
 - την ανίχνευση πιθανών υποεπιφανειακών αστοχιών, ρηγμάτων και κενών χώρων,
 - τη χαρτογράφηση του πάχους ασφάλτου και εκτίμηση της στρωματογραφίας σε δρόμους,
 - τον προσδιορισμό του πάχους επένδυσης σηράγγων και τη διερεύνηση της διεπιφάνειας βραχομάζας-επένδυσης,
 - την αποτύπωση στοιχείων και εκτίμηση της εσωτερικής δομής τοιχοποιιών κ.ά.73.

Αρχαιολογικές μελέτες

Στην αρχαιολογική έρευνα η μέθοδος του γεωραντάρ χρησιμοποιείται για:

- τον έντοπισμό θαμμένων κατασκευών και αρχαίων κτισμάτων (όπως τάφων),
- τη χαρτογράφηση του υπεδάφους πριν την εκσκαφή,
- την έρευνα κάτω από υπάρχοντα αρχαιολογικά μνημεία ή κτίσματα, καθώς και την καταγραφή θεμελίων και πιθανών διαβρώσεων σε αναδειχθέντα κτίσματα.

Επίσης, σπουδαία είναι η εφαρμογή της μεθόδου στην εξέταση αρχαίων δαπέδων μνημείων όπως ψηφιδωτών δαπέδων σε αρχαιολογικούς χώρους, για τον εντοπισμό υποκείμενων αρχαίων καταλοίπων, τη διερεύνηση του υποστρώματος και την εκτίμηση του πάχους της στρωματογραφίας τους, καθώς και την ανίχνευση κενών ή αποσαθρωμένων περιοχών κάτω από το δάπεδο, παρέχοντας χρήσιμες πληροφορίες για τη σωστή και αποτελεσματική συντήρησή τους74.

3.4. Παραδείγματα εφαρμογής

1) Στη συντήρηση μνημείων

Εικόνα 3.3. Εφαρμογή Γεωραντάρ στο Κωδωνοστάσιο του Πανέρου Ναού της Αναστάσεως, Ιεροσόλυμα 75.

2) Στην εξέταση αρχαίων ψηφιδωτών δαπέδων.

Η χρήση της μεθόδου του γεωραντάρ στο τομέα της αρχαιολογικής έρευνας είναι ιδιαίτερης σπουδαίτης για την εξέταση αρχαίων ψηφιδωτών δαπέδων, γιατί παρέχει χρήσιμες πληροφορίες για την ύπαρξη διαφορετικών οικοδομικών φάσεων κάτω από το ψηφιδωτό δάπεδο, τη διερεύνηση του υποστρώματος και την εκτίμηση της στρωματογραφίας των υποκείμενων στρωμάτων, την ανίχνευση κενών και ρωγμών, καθώς και εντοπισμό αποσαθρωμένων περιοχών του υποστρώματος.

Σε αυτό το παράδειγμα παρουσιάζεται η εφαρμογή της τεχνικής του γεωραντάρ για την εξέταση του υποστρώματος και την αποτίμηση της κατάστασης διατήρησης ψηφιδωτού δαπέδου που σώζεται στον χώρο γ’ του Εθνικού Κήπου της Αθήνας.

Το ψηφιδωτό δάπεδο, το οποίο χρονολογείται στο β’ τέταρτο ή β’ μισό του 5ου αιώνα (διαστάσεων 5,65 m × 4,10 m), συνίσταται από το κονίαμα του υποστρώματος και λίθινες ψηφίδες (Εικόνα 3.4). Όσον αφορά την κατάσταση διατήρησης του ψηφιδωτού, παρατηρείται αστοχία στο κονίαμα συμπλήρωσης που εντοπίζεται στο πλέγμα των ρωγμών που έχουν δημιουργηθεί στο μεγαλύτερο μέρος της επιφάνειάς του, με απόσπαση υλικού κατά τόπους.

Η μεγαλύτερη φθορά παρατηρείται περιμετρικά στη διεπιφάνεια νέου/αρχαίου υλικού. Εντοπίστηκαν επιφανειακές ρωγμές στη ψηφιδωθήτηση με μερική απόσπαση και απώλεια ψηφιδών, εξάρσεις και καθίζεισες του ψηφιδωτού στρωμάτων. Βασικές αιτίες για τη δημιουργία των εν λόγω φθορών αποτελούν η άμεση έκθεση του στις καιρικές συνθήκες και η έλλειψη συστήματος απορροής των όμβριων υδάτων.

Από το 2D προφίλ (τομή) εκτίμαται ότι το όριο υποστρώματος του υποστρώματος βρίσκεται σε βάθος περίπου 0,04m. Οι ισχυρές μεταβολές του ανακλώμενου σήματος που ανιχνεύονται σε απόσταση περίπου 0,8m από την αρχή της μέτρησης κατά τον οριζόντιο άξονα και εκτείνονται έως τα 2,10m, και σε βάθος περίπου 0,07m κάτω από την επιφάνεια (μοβ πλαίσιο), πιθανόν αντιστοιχούν στο επανατοποθετημένο τμήμα ψηφιδωτού σε νέο υπόστρωμα (Εικόνα 3. 6α). Ενώ στο προφίλ σάρωσης που ελήφθη κατά μήκος της γραμμής 4 (Εικόνα 3. 6β), παρατηρούμε ότι οι ανακλάσεις ανεστραμμένης φάσης που ανιχνεύονται στην περιοχή περίπου από τα 0,8m έως τα 2,20m κατά τον οριζόντιο άξονα της απόστασης και σε βάθος κυμαινόμενου περίπου μεταξύ 0,05m και 0,09 m κάτω από την επιφάνεια του ψηφιδωτού δαπέδου, μπορούν να αποδοθούν στην παρουσία υποκείμενου κενού χώρου στη διεπιφάνεια μεταξύ του ψηφιδωτού δαπέδου και του υποστρώματος. Η επεξεργασία των δεδομένων αποκάλυψε την ύπαρξη υποστρώματος κενού στις διάφορες θέσεις και μεγαλύτερη βάθη, που αποδίδονται σε κενά ή/και σε αποσαθρωμένες περιοχές του εδάφους.
3) Ανεύρεση αρχαίων κτισμάτων – (Ναός Mahram Bilqis, Υεμένη)
Ο ναός Mahram Bilqis είναι γνωστός ως Ναός Awam και αποτελεί το μεγαλύτερο προ-ισλαμικό ναό στην Υεμένη, αν όχι στον κόσμο. Κατασκευασμένος από τον αρχαίο αραβικό λαό των Σαβαίων περίπου τον 7ο αιώνα π.X, ήταν ένας ιερός τόπος αφιερωμένος στο Θεό της σελήνης Almaqah όπως αποκαλύφθηκε από τις επιγραφές που κοσμούν το τεράστιο τείχος του.

Εικόνα 3.7. Οριζόντιος χάρτης GPR σε βάθος 15cm στον ναό Mahram Bilqis^76.

Η γεωφυσική έρευνα γύρω από το χώρο του ναού, αποτελείται από μετρήσεις με γεωραντάρ και με μαγνητόμετρο. Τα πιο ενδιαφέροντα αποτελέσματα ελήφθησαν στη δυτική και νότια πλευρά του ναού, όπου απεικονίζεται ένα σύμπλεγμα δρόμων και κτιριακών δομών με προσανατολισμό παρόμοιο μ' αυτό της δυτικής πύλης του ναού. Παρά τις δυσμενείς περιβαλλοντικές συνθήκες που επικρατούσαν στη περιοχή έρευνας και οι δύο μέθοδοι υπήρξαν απολύτως επιτυχείς στο στόχο τους.

Η διαφοροποίηση του σήματος του γεωραντάρ στην περιοχή της μελέτης ήταν πολύ μικρή, υποδεικνύοντας πως τα θαμμένα αρχαιολογικά υλικά έχουν περιορισμένη αντίθεση με τα γύρω εδάφη. Τούβλα λάσπης και ασβεστολιθικές δομές είναι οι πιθανές πηγές αυτού του σήματος. Μετά από σειρά μετρήσεων δημιουργήθηκαν οριζόντιοι χάρτες από βάθος 10cm έως 100cm ανά 5cm.

Μετά την αξιολόγηση των αποτελεσμάτων και τη συμπλήρωσή τους από τα αποτελέσματα των μαγνητικών μετρήσεων, συντάχθηκε χάρτης με την ερμηνεία των δεδομένων από τη περιοχή μελέτης, στην οποία διακρίνονται ευθύγραμμα στοιχεία που αποτελούν απομεινάρια αρχαίων δρόμων, οικημάτων, τοιχίων και τάφων^77.

Εικόνα 3.8. Ερμηνεία αποτελεσμάτων της γεωφυσικής μελέτης^78.

76 Γιαννόπουλος 2014, 51-52.
77 Γιαννόπουλος 2014, 51-52.
78 Γιαννόπουλος 2014, 53.
Εικόνα 3.9. Η έρευνα με γεωραντάρ (Α τομή με συχνότητα 400MHz και Β τομή με 1.5GHz) αποκάλυψε την ύπαρξη κενών αέρος (πιθανοί ταφικοί θάλαμοι) κάτω από το δάπεδο της εκκλησίας της Αγίας Τριάδας στο Stratford του Warwickshire, England 79.

4) Αρχαιολογική έρευνα με Γεωραντάρ στη περιοχή Παλικής Νήσου Κεφαλληνίας.

Α) Θέσεις τομών γεωραντάρ (400 MHz) στην περιοχή Παλικής Ν. Κεφαλληνίας. Β) Οι Γεοφυσικοί Δρ. Π. Αχιλλεόπουλος & Δρ. Ξ. Μπαφίτης κατά την διάρκεια των εργασιών υπαίθρου με GPR & GPS, και Γ) Είκοσι β) Είκοσι γ) Έγχρωμη γεωφυσική τομή στην περιοχή σημειώνεται η εντοπισμός υπόγειας δεξαμενής νερού λαξευμένης μέσα στο ασβεστολιθικό υπόβαθρο. [80]

(Σημείωση: Μου δόθηκε η δυνατότητα συμμετοχής στο συγκεκριμένο πρόγραμμα και παρακολούθησης του τρόπου οργάνωσης των εργασιών υπαίθρου και της συλλογής των γεοφυσικών δεδομένων με γεωραντάρ, για την απόκτηση εμπειρίας).

79 Carrick & Kevin S 2017, 5 & 8.
Κεφάλαιο 4: ΒΑΡΥΤΗΜΕΤΡΙΚΗ ΜΕΘΟΔΟΣ

Η βαρυτημετρική μέθοδος βασίζεται στη διαφορά της πυκνότητας μεταξύ των πετρωμάτων. Οι διαφορές της πυκνότητας στο υπέδαφος επηρεάζουν στην μεταβολή της βαρύτητας στην επιφάνεια της Γης. Συνεπώς, ορισμένα μεταλλεύματα προκαλούν διαφορές βαρύτητας λόγω της μεγαλύτερης πυκνότητάς τους σε σύγκριση με την πυκνότητα των πετρωμάτων που τα περιβάλλουν. Διαφορές στη βαρύτητα, παρατηρούνται επίσης όταν γειτονικά πετρώματα έχουν διαφορετικές πυκνότητες, ειδικά στις περιπτώσεις στις οποίες συντρέχουν και τεκτονικοί λόγοι. Η βαρυτημετρική μέθοδος στοχεύει κυρίως στην αναζήτηση μεταλλοφόρων και πετρελαίου. Εφαρμόζεται, επίσης, στη διερεύνηση της δομής του υπεδάφους, όπως στη μορφολογία του στερεού υποβάθρου, στον εντοπισμό αντικλίνων, μεταπτώσεων κ.λπ.

Η μελέτη του πεδίου βαρύτητας, εκτός από την επιστήμη της Γεωδαισίας που μελετάει το σχήμα της Γης, παρουσιάζει ενδιαφέρον και για άλλες επιστήμες, όπως είναι η Άστρονομια, η Ωκεανογραφία, η Αρχαιολογία, κλπ. Η ραγδαία τεχνολογική πρόοδος των τελευταίων ετών επηρεάζει την ακρίβεια και τη δυναμικότητα της μετρήσης της βαρύτητας στην επιφάνεια της Γης. Οι εξελίξεις αυτές συνδέονται με τη διεπιστημονική προσέγγιση και αξιοποίηση των τελικών πρακτικών εφαρμογών.

Στο κεφάλαιο αυτό παρουσιάζονται βασικά στοιχεία και παράγοντες που επηρεάζουν το πεδίο βαρύτητας της Γης, δίνοντας συνοπτικές επεξηγήσεις και μικτές σχέσεις που περιγράφουν το πεδίο βαρύτητας της Γης. Οι εξελίξεις αυτές συνδέονται με την κλίμακα απόδοσης και την διαπραγμάτευση των παραμέτρων του πεδίου βαρύτητας της Γης.

4.1. Πεδίο βαρύτητας της Γης

Ο πρώτος που μέτρησε την επιτάχυνση της βαρύτητας (g) είναι ο Γαλιλαίος (1564-1642), ο οποίος χρησιμοποίησε αντικείμενα ολισθαίνοντα σε κεκλιμένο επίπεδο, οπότε η επιτάχυνση της κίνησής τους ελαττώνεται (από g σε g·sinφ, όπου φ η κλίση του επιπέδου) και έτσι μπορεί να μετρήσει ακριβέστερα το χρόνο. Η μονάδα μέτρησης της επιτάχυνσης που χρησιμοποιείται σήμερα φέρει, προς τιμή του, τα τρία πρώτα γράμματα του ονόματός του (1 Gal = 1 cm/sec²).

Όμως, ο πρώτος που αντελήφθη την έννοια του πεδίου βαρύτητας της Γης είναι ο Νεύτωνας ο οποίος διατύπωσε το 1646 το νόμο της παγκόσμιας έλξης:

\[F = G \frac{M_\text{ης} \cdot m}{R^2} \]

\[\Rightarrow g = \frac{F}{m} = G \frac{M_\text{ης}}{R^2} \]

\[(\text{ένταση ρεπνίου}) \]

Ως πεδίο βαρύτητας της Γης ορίζουμε το χώρο που αυτής ασκεί ελκτική δύναμη σε κάθε άλλο σώμα που βρίσκεται μέσα σ’ αυτό το χώρο. Κάθε σημείο του πεδίου βαρύτητας της Γης χαρακτηρίζεται από ορισμένη τιμή της έντασης και του δυναμικού του πεδίου. Η μεταβολή της έντασης και του δυναμικού στην επιφάνεια της Γης εξαρτώνται από τη μεταβολή της πυκνότητας μέσα στη Γη.

Γι’ αυτό, οι μεταβολές της έντασης και του δυναμικού που μετρούνται στην επιφάνεια της Γης μπορούν να χρησιμοποιηθούν για την εξαγωγή συμπερασμάτων σχετικών με τη δομή της Γης. Αυτός είναι ο βασικός λόγος για τον οποίο η μελέτη του πεδίου βαρύτητας της Γης ενδιαφέρει τη Γεωφυσική. Το γήινο πεδίο βαρύτητας είναι ένα πεδίο δυνάμεων, σε κάθε σημείο του οποίου η ένταση της βαρύτητας ποικίλει λόγω της κατανομής της γήινης μάζας και των διαφορετικών υλικών, με διαφορετικές πυκνότητες που την αποτελούν. Άλλοι σημαντικοί παράγοντες που επιδρούν στο πεδίο βαρύτητας είναι:

i. Οι γήινες παλίρροιες, που προκαλούνται από τις ελκτικές δυνάμεις της βαρύτητας που ασκεί στους ουρανούς της Σελήνης.

ii. Η Σελήνη που είναι πολύ μικρότερη σε μέγεθος από τον Ήλιο, είναι επίσης πολύ πιο κοντά στη Γη, και έτσι η επίδρασή της στις παλίρροιες και στο πεδίο βαρύτητας είναι πιο σημαντική.

iii. Οι ωκεανοί που καλύπτουν περίπου τρία τέταρτα της γήινης επιφάνειας και η στάθμη τους μεταβάλλεται συνεχώς (λόγω προσθήκης νέων όγκων υδάτων από το λιώσιμο των πάγων, των οικεάνιους, των παλιρροιών, κ.ά.)

iv. Και επιπλέον, ένας άλλος παράγοντας είναι τα στρώματα των πάγων στις αρκτικές περιοχές της Γης (π.χ. στην Ανταρκτική), τα οποία συμπίεζον το γήινο φλοιό από κάτω τους και οι όποιες αλλαγές του πάχους τους προκαλούν φαινόμενα ισοστασίας (όπως η αναπήδηση του γήινου φλοιού) και αλλάζουν διαχρονικά το πεδίο βαρύτητας.

Ισως φαίνεται περίεργη η ύπαρξη συνδέσης μεταξύ του πεδίου βαρύτητας της Γης, των παλιρροιών (που οφείλονται στην βαρυτική έλξη του Ήλιου και της Σελήνης) και των διαφόρων κινήσεων που εκτελεί η Γη (περιστροφή, περιφορά γύρω από τον Ήλιο, κλόνιση του άξονα περιστροφής, κλπ.). Ο λόγος που τα παραπάνω φαινόμενα συνδέονται μεταξύ τους είναι το γεγονός ότι οι εσωτερικές κινήσεις στη Γη και οι αλληλεπιδράσεις της με τα άλλα αστρονομικά σώματα δίνουν πληροφορίες για τη δομή της Γης και κυρίως την αλλαγή της πυκνότητας, η οποία καθορίζει το πεδίο βαρύτητας της.

4.2. Μετρήσεις βαρύτητας

Η διαδικασία συλλογής σχετικών μετρήσεων με τη χρήση φορητών βαρυτόμετρων πρέπει να λάβει υπ’ όψη διάφορους περιορισμούς, όπως π.χ. την επίδραση των παλιρροιών, η οποία μπορεί να υπολογιστεί αναλυτικά και να αφαιρεθεί εκ των υστέρων από τις μετρήσεις. Για να ξεπεραστούν τα προβλήματα αυτά, οι μετρήσεις πραγματοποιούνται σε “βρόχους” (A,B,Γ), οι οποίοι «κλείνουν» ανά μικρά χρονικά διαστήματα (1-2 ορών) κάθε φορά στον ίδιο σταθμό βάσης (σταθμός 1), όπως φαίνεται και στην εικόνα 4.1α. Εξετάζοντας την χρονική μεταβολή των μετρήσεων, παρατηρείται ότι οι μετρήσεις στο σταθμό βάσης (1) παρουσιάζουν μια πλασματική χρονική μεταβολή λόγω του ερπυσμού (drift) και της μακροπρόθεσμης αλλαγής των ελαστικών σταθερών του ελατηρίου.

Τα σύγχρονα όργανα αφαιρούν αυτόματα με ενσωματωμένο λογισμικό την επίδραση των παλιρροιών, η οποία βεβαιώνει υπολογισμοί αναλυτικά και να αφαιρεθεί εκ των υστέρων από τις μετρήσεις. Για να ξεπεραστούν τα προβλήματα αυτά, οι μετρήσεις πραγματοποιούνται σε «φρόντες» (A,B,Γ), οι οποίοι «κλέινουν» ανά μικρά χρονικά διαστήματα (1-2 ωρών) κάθε φορά στον ιδίο σταθμό βάσης (σταθμός 1), όπως φαίνεται και στην εικόνα 4.1α. Εξετάζοντας την χρονική μεταβολή των μετρήσεων, παρατηρείται ότι οι μετρήσεις στο σταθμό βάσης (1) παρουσιάζουν μια πλασματική χρονική μεταβολή λόγω του ερπυσμού του οργάνου ή και άλλων συστηματικών σφαλμάτων, αλλά και των παλιρροιών, εφ’ όσον αυτές δεν έχουν διορθωθεί στις μετρήσεις. Η

μεταβολή αυτή μπορεί να είναι γραμμική για μικρά χρονικά διαστήματα, αλλά συχνά έχει πιο
πολύπλοκη μορφή, ιδίως για μεγαλύτερα χρονικά διαστήματα.

Εικόνα 4.1. Απλοποιημένη διαδικασία βαρυτικών μετρήσεων: α) Οι μετρήσεις πραγματοποιούνται σε «βρόχους»
(A,B,Γ), οι οποίοι «κλείνουν» κάθε φορά στον ίδιο σταθμό βάσης. β) Οι μετρήσεις στο σταθμό βάσης (σταθμός 1)
παρουσιάζουν πλασματική χρονική μεταβολή λόγω του ερπυσμού (πιθανώς και των παλιρροιών). γ) Με τη χρήση των
μετρήσεων του σταθμού βάσης πραγματοποιείται διόρθωση των μετρήσεων και ανάδειξη της πραγματικής χωρικής
μεταβολής του βαρυτικού πεδίου.84

4.3. Κανονικό πεδίο βαρύτητας

Το κανονικό σχήμα της Γης μπορεί θεωρείται ότι είναι ένα ελλειψοειδές εκ περιστροφής,
pou γεωμετρικά καθορίζεται πλήρως από τον μεγάλο και μικρό ημιάξονα (a,b), ενώ επιπλέον
eισάγονται ως φυσικές παράμετροι η συνολική μάζα της Γης (Μ), καθώς και η γωνιακή
ταχύτητα (ω) περιστροφής της. Το πεδίο βαρύτητας ενός ελλειψοειδούς, είναι θεμελιώδους αρχής
της φυσικής θεωρίας της βαρύτητας, από το «πεδίο του ελλειψοειδούς» είναι τόσο μικρές που μπορούν να θεωρηθούν γραμμικές.

4.4. Όργανα και μέθοδος μετρήσεων

Η τιμή της έντασης της βαρύτητας g εκφράζει την επιτάχυνση κάθε σημειακής μάζας κάτω
από την επίδραση της έλξης της Γης και της φυγόκεντρου δύναμης που προκαλείται από την
περιστροφή της. Η κύρια μέθοδος που χρησιμοποιείται για τη μέτρηση της βαρύτητας βασίζεται
ουσιαστικά στην ακριβή μέτρηση του μήκους και του χρόνου. Η κυρίότερη δυσκολία αποτελεί το
γεγονός ότι είναι εξαιρετικά δύσκολο να κατασκευαστούν όργανα τα οποία να μπορούν να μετρήσουν
απειροελάχιστες μεταβολές της βαρύτητας που αποτελούν και το τελικό ζήτημα από τις
γεωφυσικές διασκοπήσεις. Υπάρχουν ωστόσο, μια σειρά μεθόδων που επιτρέπουν κάτι τέτοιο με τη
βοήθεια ευαίσθητων οργάνων και αισθητήρων, όπως διατάξεις έμμεσης μέτρησης της βαρύτητας που
αποτελεί και το τελικό ζητούμενο από τις

84 Παπαζάχος & Παπαζάχος 2008, 305.
4.4.1. Μετρήσεις με τη μέθοδο ταλάντωσης εκκρεμών

Η αρχή ταλάντωσης ενός εκκρεμούς είναι από τις παλαιότερες που χρησιμοποιήθηκε για τον έμμεσο προσδιορισμό της απόλυτης τιμής της βαρύτητας. Πρώτος ο Galileo μελέτησε την κίνηση των εκκρεμών καταδεικνύοντας την λεγόμενη αρχή του "ισοχρονισμού των εκκρεμών" ότι δηλ. η περίοδος ενός εκκρεμούς είναι ανεξάρτητη από το εύρος της ταλάντωσης.

4.4.2. Μετρήσεις με τη μέθοδο της ελεύθερης πτώσης των σωμάτων

Οι μέθοδοι που βασίζονται στην ταλάντωση εκκρεμών έχουν κατά κανόνα εκτοπιστεί από τις λεγόμενες βαλλιστικές μεθόδους που βασίζονται στην παρατήρηση της ελεύθερης πτώσης σωμάτων για τη μέτρηση της επιτάχυνσης της βαρύτητας. Ιστορικά, η μέθοδος αυτή αποδίδεται στον Galileo που διεξήγαγε τα γνωστά πειράματα ρίχνοντας από τον κεκλιμένο Πύργο της Πίζας αντικείμενα ποικίλης μάζας.

Για να μετρήσουμε, τις αλλαγές στην επιτάχυνση βαρύτητας με ακρίβεια ± 0.01 mgal, πρέπει η μετρητική διάταξη που επιτρέπει την πτώση του αντικειμένου κατά 1 m, να είναι σε θέση να μετρήσει αλλαγές στην απόσταση: ± 0.01 mm και στο χρόνο ± 20 nsec. Σήμερα υπάρχουν όργανα που βασίζονται στην εν λόγω μεθοδολογία και επιτρέπουν τη μέτρηση της απόστασης (με τη τεχνολογία των λέιζερ) και του χρόνου (με ατομικά χρονόμετρα) και την αντίστοιχη μέτρηση της έντασης της βαρύτητας με ακρίβεια καλύτερη από ±0.001 mgals.

4.4.3. Όργανα μέτρησης με τη μέθοδο παραμόρφωσης ελατηρίου

Η μέτρηση της τιμής της βαρύτητας είναι δυνατή με τη χρήση απλών μετρητικών διατάξεων που βασίζονται στην παραμόρφωση ελατηρίων στην άκρη των οποίων κρέμεται μια μάζα \(m \), το βάρος της οποίας αντισταθμίζεται από τη τάση του ελατηρίου (νόμος του Hooke). Τα υλικά που χρησιμοποιούνται για τη κατασκευή του ελατηρίου των βαρυτόμετρων είναι κράματα μετάλλων, π.χ. NiFe και χαλαζία, τα οποία εμφανίζουν μεγάλη ελαστικότητα (ώστε να επιτρέπουν μεγαλύτερη ένταση του ελατηρίου), μικρό θερμοελαστικό συντελεστή (ώστε να εξαρτώνται το δυνατόν λιγότερο από αλλαγές της θερμοκρασίας) και μικρό συντελεστή διαστολής (ώστε οποιεσδήποτε αλλαγές της θερμοκρασίας να προκαλούν μικρές μεταβολές του μήκους του ελατηρίου). Στις περισσότερες περιπτώσεις το σύστημα μέτρησης βρίσκεται κλεισμένο μέσα σε θερμοστατικό θάλαμο που προσφέρει θεράπαση απέναντι σε ατμοσφαιρικές και ηλεκτρικές επιδράσεις.

Δύο αντιπροσωπευτικοί τύποι τέτοιων οργάνων με ελατήριο είναι το βαρυτόμετρο Askania Gs (γραμμικού τύπου) και το LaCoste– Romberg (αστατικού τύπου), τα οποία προσφέρουν μεγάλη ακρίβεια και ταχύτητα μέτρησης.\(^{86}\)

85 Γκόγκο 2015, 24.
4.4.4 Βαρυτήμετρα Worden

Τα Worden ανήκουν στα λεγόμενα βαρυτήμετρα αστατικού τύπου που βασίζονται σε ένα ελαστικό σύστημα από χαλαζία, όπου η ισορροπία της μάζας του ελατηρίου επιτυγχάνεται με ένα μηχανισμό επαναφοράς που ενεργεί πλάγια στο ελατήριο μηδενικού μήκους και ισορροπεί τη μάζα κοντά στο σημείο αστάθειας, έτσι ώστε είναι δυνατή η μέτρηση επιμηκύνσεων ή συσπειρώσεων του ελατηρίου ακόμα και για μικρές μεταβολές της βαρύτητας. Τα βαρυτήμετρα Worden μετρούν τις σχετικές τιμές της βαρύτητας και μπορούν να ανιχνεύσουν μεταβολές με ακρίβεια της τάξης 1/10 της κανονικής βαρύτητας της Γης και κάτω από ιδιαίτερα συνθήκες, επιτρέπουν τη μέτρηση των σχετικών τιμών της βαρύτητας της τάξης του 0.01 mgal, γι’ αυτό και σε συνδυασμό με το μικρό τους βάρος και μέγεθος χρησιμοποιούνται ευρέως για τις γεωφυσικές διασκοπήσεις.

4.4.5. Βαρυτήμετρα CG-5

Τα βαρυτόμετρα CG-5 είναι ευαίσθητα όργανα σταθερής βάσης με τα οποία επιχειρείται η βαρυτημετρία μιας περιοχής. Έχουν εύρος μέτρησης πάνω από 8000 mgals χωρίς επανεκκίνηση και η ανάλυση τους κυμαίνεται στα 0.001 mgal. Αυτό επιτρέπει στα αυτογραφικά βαρυτόμετρα να χρησιμοποιηθούν τόσο για λεπτομερείς έρευνες πεδίου (ἀρχαιολογία), καθώς και για μεγάλες κλίμακες περιφερειακές ή γεωδαιτικές έρευνες.

Τα όργανα αυτά παρέχουν μεγάλη ακρίβεια στις μετρήσεις που λαμβάνονται από το πάτημα ενός πλήκτρου και χρειάζονται λιγότερο από ένα λεπτό για να ολοκληρωθεί μια ανάγνωση. Επιπλέον, μια σειρά από αναγνώσεις των μετρήσεων βαρύτητας μπορεί να πραγματοποιηθεί με τη ρύθμιση του οργάνου στη λειτουργία αυτόματης επανάληψης. Οι μεμονωμένες μετρήσεις εμφανίζονται άμεσα σε mgals και τα δεδομένα αποθηκεύονται σε ψηφιακή μνήμη.

87 Γκόγκο 2015, 29.
Η χαμηλή ολίσθηση είναι αποτέλεσμα του εξαιρετικά σταθερού λειτουργικού και περιβαλλόμενου από χαλαζία ελαστικού συστήματος (μη μαγνητικού) και έτσι δεν επηρεάζεται από τις μεταβολές του μαγνητικού πεδίου.

Επιπλέον, επιτρέπει τη μακροπρόθεσμη μετατόπιση του αισθητήρα και μια διόρθωση λογισμικού σε πραγματικό χρόνο μειώνει την ολίσθηση σε λιγότερο από 0,02 mgal ανά ημέρα, ενώ είναι κατασκευασμένο για λειτουργία σε θερμοκρασίες από -40°C έως 45°C. Το εν λόγω βαρυτόμετρο κάνει αυτόματες διορθώσεις κατά την καταγραφή των παρατηρήσεων για παλίρροιες, κλίση του οργάνου, θερμοκρασία, θόρυβο καθώς και για τυχόν σεισμικές δονήσεις88.

4.4.6. Απόλυτες – Σχετικές μετρήσεις Βαρύτητας

Οι βαρυτομετρικές μετρήσεις είναι δυνατό να είναι απόλυτες ή σχετικές. Με τον όρο απόλυτη μέτρηση της βαρύτητας εννοούμε τον προσδιορισμό του μέτρου g σε ένα σημείο Ρ, ενώ με τον όρο σχετική μέτρηση της βαρύτητας εννοούμε τη μέτρηση της διαφοράς Δg των τιμών της επιτάχυνσης βαρύτητας ανάμεσα σε δύο διαφορετικά σημεία P και Q.

Οι μετρήσεις βαρύτητας (απόλυτες & σχετικές) είναι έμμεσες μετρήσεις, δηλ. βασίζονται σε πειράματα που έχουν σχέση με την κίνηση μαζών στο πεδίο βαρύτητας, οπότε το μετρούμενο μέγεθος είναι συνήθως μήκος και χρόνος ή μήκος και περίοδος ταλάντωσης (απόλυτες μετρήσεις), ή σε πειράματα που βασίζονται στην αρχή του ελατηρίου (σχετικές μετρήσεις)89.

4.5. Διορθώσεις και αναγωγές των μετρήσεων της βαρύτητας

Οι μετρήσεις βαρύτητας, είτε αυτές αναφέρονται στην απόλυτη ή στη σχετική τιμή της έντασης της βαρύτητας, προκειμένου να αποδοθούν χρήσιμες για τις εκάστοτε συγκεκριμένες ανάγκες μιας γεωφυσικής διασκόπησης πρέπει να διορθώνονται για μια σειρά από φυσικές επιδράσεις και παράγοντες που επηρεάζουν τις προτογενείς παρατηρήσεις (π.χ. παλίρροιες, ολίσθηση του οργάνου). Με αυτόν τον τρόπο διασφαλίζεται η ορθή ερμηνεία των τιμών της βαρύτητας μιας περιοχής ή συγκεκριμένων σημείων και θα μπορεί να συσχετισθούν οι

89 Γκόγκο 2015, 37.
παρατηρούμενες μεταβολές της βαρύτητας με τις υπεδάφιες αλλαγές της πυκνότητας της Γης. Επιπλέον, δεδομένου ότι οι μετρήσεις βαρύτητας διεξάγονται συνήθως στην επιφάνεια της Γης και προκειμένου οι μετρούμενες τιμές \(g \) να είναι άμεσα συγκρίσιμες με τις αντίστοιχες τιμές \(\gamma \) του κανονικού πεδίου βαρύτητας, ώστε να μπορεί να υπολογισθούν οι ζητούμενες ανωμαλίες βαρύτητας \(Dg \), οι μετρήσεις πρέπει να “ανάγονται” εξ ορισμού από την τοπογραφική επιφάνεια στο γεωειδές.\(^{90}\)

4.6. Αναγωγές των μετρήσεων της βαρύτητας

Ο όρος αναγωγή στη Γεωδαισία υποδηλώνει την επεξεργασία των μετρήσεων προκειμένου να ληφθούν υπόψη οι επιδράσεις που οφείλονται αποκλειστικά στη θεωρητική προσέγγιση και τη μεθοδολογία μοντελοποίησης που ακολουθείται στην μελέτη του γήινου πεδίου βαρύτητας (π.χ., το διαχωρισμό του πραγματικού και του κανονικού πεδίου βαρύτητας).

Οι χωρικές αποκλίσεις της βαρύτητας αφορούν κυρίως αλλαγές στην παρατηρηθείσα επιτάχυνση της βαρύτητας που εξαρτώνται από την εκάστοτε τοποθεσία των μετρήσεων, οι οποίες όμως δεν συσχετίζονται με τη γεωλογία της περιοχής. Τα κύρια αίτια είναι οι αποκλίσεις εξ αιτίας: α) του γεωγραφικού πλάτους \(φ \), οι οποίες προκαλούνται από την ελλειψοειδή μορφή του σχήματος της Γης και την περιστροφή της Γης, β) του υψομέτρου των εκάστοτε σημείων των μετρήσεων, γ) των υπεδαφικών πετρωμάτων στα σημεία των μετρήσεων της βαρύτητας, και δ) της τοπογραφίας (μορφολογίας) στην περιοχή γύρω από τα σημεία των μετρήσεων της βαρύτητας.\(^{91}\)

4.7. Δορυφορικές τεχνικές

Πριν από την ανάπτυξη των δορυφορικών τεχνικών, οι μέθοδοι παρατήρησης του γήινου πεδίου βαρύτητας περιορίζονταν στις επίγειες μεθόδους βαρυτημετρίας που βασίζονται σε μια από τις προαναφερθείσες μεθόδους μέτρησης της απόλυτης ή σχετικής τιμής της βαρύτητας. Η βαρυτημετρίας στις θαλάσσιες περιοχές ήταν (και παραμένει) ανεπαρκής και οικονομικά ασύμφορη, πέρα από το γεγονός ότι οι μετρήσεις βαρύτητας στη θάλασσα δεν παρείχαν μια αξιόπιστη ακρίβεια. Οι διασκοπήσεις από αέρος (με αεροπλάνα ή ελικόπτερα) χρησιμοποιούν ειδικές μετρητικές διατάξεις, οι οποίες συνήθως απαιτούν τη διατήρηση του προσανατολισμού τους στην οριζόντια διεύθυνση κατά τη διάρκεια της πτήσης, καθώς επίσης και την αυτόματη αποθήκευση των μετρήσεων μαζί με το ακριβές στίγμα της θέσης του αισθητήρα, κατά τη χρονική στιγμή κάθε μέτρησης. Σήμερα αυτό είναι περισσότερο εφικτό με τη χρήση αερομεταφερόμενων συστημάτων GPS κατάλληλα διασυνδεδεμένων με τις εκάστοτε μετρητικές διατάξεις της βαρύτητας και προσφέρουν σημαντικά πλεονεκτήματα σε σχέση με τις καθαρά επίγειες ή θαλάσσιες μετρήσεις, όπως ταχύτητα εκτέλεσης των μετρήσεων, δυνατότητα χρήσης σε απρόσιτες περιοχές, αλλά και σημαντικά μειοκτήτημα, όπως είναι οι επιδράσεις ανεπιθύμητων παρόμοιων σημάτων με εκείνα των μετρήσεων (π.χ. της επιτάχυνσης του αεροπλάνου) που πρέπει να αντικατοπτρίζονται κι η εξομάλυνση του πεδίου βαρύτητας εξ αιτίας του ύψους της πτήσης και το δυσανάλογο οικονομικό κόστος στη περίπτωση που αφορούν περιοχές μικρής έκτασης.\(^{90,91}\)

90 Πούλη 2015, 39.
91 Πούλη 2015, 41.
Οι δορυφορικές τεχνικές προσφέρουν σήμερα νέες δυνατότητες κυρίως από την προσθήκη νέων τύπων διαφορετικών μετρητικών διατάξεων και δεδομένων μέτρησης του πεδίου βαρύτητας. Τα κύρια πλεονεκτήματα των δορυφορικών μεθόδων έναντι των επίγειων μεθόδων μέτρησης της βαρύτητας είναι προφανή: η δυνατότητα παγκόσμιας κάλυψης, ομοιογενής ποιότητα των μετρήσεων, υψηλή ακρίβεια και υψηλή αποδοτικότητα (σε κόστος και χρόνο διεξαγωγής των μετρήσεων). Κατά συνέπεια, οι δορυφορικές μέθοδοι βαρυτημετρίας αναμένεται να παίξουν ένα συνεχώς αυξανόμενο ρόλο στον λεπτομερή προσδιορισμό του γήινου πεδίου βαρύτητας.92

92 Γκόγκο 2015, 45-47.
Κεφάλαιο 5: ΙΕΩΗΛΕΚΤΡΙΚΗ ΜΕΘΟΔΟΣ

5.1. Μέθοδος της ειδικής ηλεκτρικής αντίστασης

Οι ηλεκτρικές μέθοδοι έχουν ως στόχο τον προσδιορισμό των ηλεκτρικών ύληττων των επιφανειακών στρομάτων του φλοιού της Γης. Η μετρούμενη ποσότητα είναι η ηλεκτρική τάση, από την οποία επιδιώκεται ο καθορισμός της ειδικής ηλεκτρικής αντίστασης και της κατανομής των τιμών της μέσα στα επιφανειακά στρώματα του εδάφους. Η μέθοδος της ειδικής ηλεκτρικής αντίστασης είναι η πιο διαδεδομένη από τις ηλεκτρικές μεθόδους τόσο από τη λειτουργική πλευρά όσο και από τη θεωρητική πλευρά. Έχει σκοπό τον καθορισμό της κατανομής της ειδικής ηλεκτρικής αντίστασης στο υπέδαφος που ονομάζεται γεωηλεκτρική δομή. Αυτό επιτυγχάνεται με την δημιουργία τεχνητών ηλεκτρικών πεδίων. Το ηλεκτρικό πεδίο επηρεάζεται από τη δομή του υπεδάφους και επομένως από τις μετρήσεις του δυναμικού είναι δυνατός ο καθορισμός της δομής.93

Η μονάδα μέτρησης της ειδικής αντίστασης στο S.I. είναι το Ohm m. Το αντίστροφο της ειδικής ηλεκτρικής αντίστασης ονομάζεται ειδική ηλεκτρική αγωγιμότητα (σ = 1/ρ), με μονάδα μέτρησης στο διεθνές σύστημα το Siemens/m. Υπάρχουν τα ηλεκτρόδια ρεύματος AB που είναι συνδεδεμένα με το αμπερόμετρο για τον υπολογισμό της έντασης του ρεύματος που εισάγεται στο υπεδάφος, ενώ τα ηλεκτρόδια MN είναι τα ηλεκτρόδια τάσης, που συνδέονται με βολτόμετρο για τη μέτρηση της τάσης.94 Εφαρμόζοντας το νόμο του Ohm προκύπτει ότι η ειδική ηλεκτρική αντίσταση υπολογίζεται από τη σχέση:

\[
ρ = 2\pi \frac{V_{MN}}{I} \left(\frac{1}{r_1} - \frac{1}{r_2} - \frac{1}{R_1} + \frac{1}{R_2} \right)^{-1}
\]

όπου I είναι η ένταση του ρεύματος που διοχετεύεται από τα ηλεκτρόδια ρεύματος (A,B), VMN είναι η μετρούμενη διαφορά δυναμικού στα αντίστοιχα ηλεκτρόδια (M,N) και r1, r2, R1 και R2 είναι οι αποστάσεις μεταξύ των ηλεκτροδίων A-M, B-M, A-N και B-N, αντίστοιχα.

Η παραπάνω σχέση προέκυψε θεωρώντας ότι τα επιφανειακά στρώματα της Γης είναι ομογενή, αυτό όμως δεν ισχύει καθώς η ειδική ηλεκτρική αντίσταση δεν είναι σταθερή σε αυτά. Η αντίσταση που υπολογίζεται από την προηγούμενη σχέση εκφράζει το μέσο όρο των τιμών των

αντιστάσεων των διαφόρων υλικών που βρίσκονται στα επιφανειακά στρώματα και ονομάζεται
φαινόμενη ειδική ηλεκτρική αντίσταση (ρa).

Η τιμή της φαινόμενης ειδικής ηλεκτρικής αντίστασης εξαρτάται από τη κατανομή της
ειδικής αντίστασης στο υπέδαφος και από τη γεωμετρία των ηλεκτροδίων. Ο υπολογισμός της είναι
πολύ σημαντικός και οδηγεί στον καθορισμό της πραγματικής ειδικής ηλεκτρικής αντίστασης του
υπεδάφους.

Υπάρχουν πολλές διατάξεις ηλεκτροδίων που εφαρμόζονται σήμερα στην ύπαιθρο (Εικόνα
5.2), ανάλογα με την περιοχή, το μέγεθος των δομών που αναμένονται, τον εξοπλισμό και την
εξοικείωση του προσωπικού. Οι κυριότεροι παράγοντες κατά την επιλογή της διάταξης στην
ηλεκτρική διασκόπηση είναι το βάθος διασκόπησης και η διακριτική ικανότητα τους.

Οι διατάξεις στις οποίες χρησιμοποιούνται δίπολα (δίπολο – δίπολο, πόλο – δίπολο) έχουν
μεγαλύτερο βάθος διασκόπησης για συγκεκριμένο ανάπτυγμα ηλεκτροδιών και καλύτερη
πλευρική διακριτική ικανότητα σε σχέση με τις υπόλοιπες διατάξεις ηλεκτροδίων. Η διάταξη 16
πόλο – δίπολο παρέχει μεγαλύτερο βάθος διασκόπησης από την δίπολο – δίπολο και
ικανοποιητική διακριτική ικανότητα. Οι διατάξεις Wenner και Schlumberger έχουν καλύτερη
diakritiki ikanonitita ws pro to bado se skhse me tis upoloupeis diataseis.
5.2. Φαινόμενη ειδική ηλεκτρική αντίσταση

Επειδή η Γη είναι ανομοιογενής και ανισότροπη, η μετρούμενη ηλεκτρική αντίσταση είναι συνάρτηση της γεωηλεκτρικής δομής του υπεδάφους και της γεωμετρικής διάταξης των ηλεκτροδίων. Για τον λόγο αυτό εισάγεται ο όρος της φαινόμενης ειδικής ηλεκτρικής αντίστασης. Η αντίσταση αυτή εκφράζει το μέσο όρο των τιμών των αντιστάσεων των διαφόρων υλικών που βρίσκονται στα επιφανειακά στρώματα και ονομάζεται φαινόμενη ειδική ηλεκτρική αντίσταση (ρα).

Ο υπολογισμός της είναι πολύ σημαντικός και οδηγεί στον καθορισμό της πραγματικής ειδικής ηλεκτρικής αντίστασης του υπεδάφους. Για δεδομένη διάταξη ηλεκτροδίων αποδεικνύεται ότι σημασία για τη διαμόρφωση της τιμής ρα έχει η κατανομή της ειδικής αντίστασης των στρωμάτων μέχρι βάθους 1 ισού κατά προσέγγιση με την απόσταση των ηλεκτροδίων του ρεύματος. Επομένως από τις μεταβολές του ρα που προκύπτουν από τις μετρήσεις με μια συγκεκριμένη διάταξη ηλεκτροδίων μπορούν να διαπιστωθούν μεταβολές στην κατανομή της ειδικής αντίστασης στο υπέδαφος. Η τιμή της φαινόμενης ειδικής ηλεκτρικής αντίστασης εξαρτάται από την κατανομή της ειδικής ηλεκτρικής αντίστασης στο υπέδαφος και από τη γεωμετρία των ηλεκτροδίων. Για τον υπολογισμό της φαινόμενης ειδικής ηλεκτρικής αντίστασης, είναι δυνατόν να χρησιμοποιηθούν διαφορετικές διατάξεις ηλεκτροδίων, οι οποίες θα περιγραφούν παρακάτω.

5.3. Ηλεκτρική τομογραφία

Η ηλεκτρική τομογραφία ανήκει στις ηλεκτρικές μεθόδους γεωφυσικής διασκόπησης και συμβάλλει στη λεπτομερή απεικόνιση του υπεδάφους, καθώς είναι μέθοδος υψηλής διακριτικής ικανότητας. Στην ηλεκτρική τομογραφία, η περιγραφή της γεωλογικής δομής βασίζεται στη μελέτη των μεταβολών της ειδικής ηλεκτρικής αντίστασης κατά την οριζόντια και την κατακόρυφη διεύθυνση, εντοπίζοντας έτσι ασυνέχειες κατά την οριζόντια ανάπτυξη των σχηματισμών, όπως ρήγματα, έγκοιλα ή θαμμένες ανθρώπινες κατασκευές.

Μια σειρά από μετρήσεις της φαινόμενης ειδικής αντίστασης πραγματοποιείται μετακινώντας τη διάταξη των ηλεκτροδίων από θέση σε θέση κατά μήκος της γραμμής μελέτης. Στη συνέχεια, πραγματοποιείται επεξεργασία των τιμών της φαινόμενης ειδικής ηλεκτρικής αντίστασης χρησιμοποιώντας ένα λογισμικό πακέτο για τον υπολογισμό της πραγματικής ειδικής ηλεκτρικής αντίστασης.

Η ηλεκτρική τομογραφία χρησιμοποιείται για χαρτογράφηση περιοχών που εμφανίζουν περίπλοκη γεωλογική δομή όπου η συμβατική μέθοδος της ηλεκτρικής βυθοσκόπησης είναι ανεπαρκής. Τέτοιες διασκοπήσεις γίνονται με τη χρήση 28 ηλεκτροδίων ή περισσότερων τα οποία τοποθετούνται πάνω στην γραμμή μελέτης με αύξουσα σειρά. Μια κεντρική μονάδα υπολογιστή επιλέγει αυτόματα τα ενεργά ηλεκτρόδια που θα χρησιμοποιηθούν για την κάθε μέτρηση, ανάλογα με τη διάταξη που έχει επιλεχθεί από την χρήστη πριν από την έναρξη των μετρήσεων.

Εικόνα 5.3. Εξοπλισμός και διάταξη ηλεκτροδίων για ηλεκτρική τομογραφία.

Τα δεδομένα της φαινόμενης ειδικής ηλεκτρικής αντίστασης από τις διασκοπήσεις αποτελούν μια ψευδοτομή που δίνει μια πρώτη εκτίμηση για την κατανομή της ειδικής ηλεκτρικής αντίστασης στο υπέδαφος. Το επόμενο βήμα είναι η αντιστροφή των τιμών της φαινόμενης ειδικής ηλεκτρικής αντίστασης σε πραγματικές τιμές της ειδικής ηλεκτρικής αντίστασης για την ορθή ερμηνεία και τον προσδιορισμό του βάθους των γεωηλεκτρικών δομών.96

Εικόνα 5.4. Παράλληλες τομές για τρισδιάστατη ηλεκτρική τομογραφία.

Πίνακας 5.1: Διακύμανση της ειδικής ηλεκτρικής αντίστασης των διαφόρων υλικών.\(^97\)

97 Τσούρλος:
5.4. Τρόποι διάταξης ηλεκτροδίων

Η επιλογή του τρόπου διάταξης των ηλεκτροδίων αποτελεί πολύ σημαντικό βήμα για τις γεωηλεκτρικές διασκοπήσεις. Η διάταξη των ηλεκτροδίων επηρεάζει σε σημαντικό βαθμό την ακρίβεια των μετρήσεων. Οι παράγοντες-κριτήρια που πρέπει να λαμβάνονται υπόψη πριν τις ηλεκτρικές διασκοπήσεις είναι οι παρακάτω:

✓ Λόγος σήματος προς θόρυβο

Ως προς τον παράγοντα αυτό κατά σειρά προτεραιότητας οι διατάξεις είναι: Wenner, Schlumberger, διπόλου-διπόλου.

✓ Ευαισθησία σε οριζόντιες ανομοιογένειες

Οι οριζόντιες ανομοιογένειες φαίνεται να προκαλούν μεγαλύτερη ευαισθησία στην διάταξη διπόλου-διπόλου και λιγότερη σε Wenner και Schlumberger.

✓ Ευαισθησία σε βάθος και διεισδυτικότητα

Οι διατάξεις Schlumberger και Wenner έχουν σχεδιαστεί για να χρησιμοποιούνται σε βυθοσκοπήσεις και η συνεχής αυξανόμενη απόσταση των ηλεκτροδίων ρεύματος δίνει λεπτομερή ανάλυση της ειδικής αντίστασης σε βάθος, σε αντίθεση με τη διάταξη διπόλου-διπόλου.

✓ Διεισδυτικότητα δια μέσου επιφανειακού αγώγιμου στρώματος (Επίδραση του επιδερμικού φαινομένου)

Το επιδερμικό φαινόμενο επηρεάζει την ικανότητα διείσδυσης σε μεγάλα βάθη. Η δυνατότητα μεγάλου ανοίγματος ηλεκτροδίων ρεύματος της διάταξης Schlumberger μαζί με την ευαισθησία σε βάθος που έχει, της παρέχουν ένα σαφές προβάδισμα.

✓ Βάθος διασκόπησης

To βάθος της διασκόπησης εξαρτάται κυρίως από το οριζόντιο ανάπτυγμα (απόσταση μεταξύ των ηλεκτροδίων), που σημαίνει ότι η διάταξη Schlumberger πλεονεκτεί. Επίσης το βάθος διασκόπησης επηρεάζεται από τις ανομοιογένειες, τη τοπογραφία, τη κλίση των στρωμάτων, το ανάγλυφο του υπόβαθρου και από το μοντέλο των στρωμάτων του υπεδάφους 98.

1) Ευαισθησία στην μορφολογία του υπόβαθρου

Η διάταξη διπόλου-διπόλου υπερτερεί των άλλων διατάξεων στην περίπτωση των γεωλογικών ανομαλιών.

2) Ευαισθησία στο τοπογραφικό ανάγλυφο της περιοχής έρευνας.

Υπάρχουν διάφοροι τρόποι διάταξης των ηλεκτροδίων ρεύματος και δυναμικού, ανάλογα με τον επιδιωκόμενο σκοπό. Στις περισσότερες περιπτώσεις τα ηλεκτρόδια ρεύματος και τα ηλεκτρόδια δυναμικού τοποθετούνται στην ίδια ευθεία γραμμή. Τα ηλεκτρόδια ρεύματος τοποθετούνται εξωτερικά των ηλεκτροδίων δυναμικού 99.

98 Gupta Sarma 1981, 308-311, Parasnis 1984, 139-141
Στην πράξη, συχνότερα, χρησιμοποιούνται οι παρακάτω διατάξεις:

α) Διάταξη Wenner

Η διάταξη Wenner, αποτελεί μια από τις πιο διαδεδομένες τεχνικές ανάπτυξης ηλεκτροδίων μέτρησης της κατανομής της ειδικής ηλεκτρικής αντίστασης. Κατά την εφαρμογή της απαιτείται η παρουσία 4 συνευθειακών και σε ίσες αποστάσεις ηλεκτροδίων: AM=MN=NB=α.

Τα δύο εσωτερικά ηλεκτρόδια χρησιμοποιούνται για την μέτρηση της αναπτυσσόμενης διαφοράς δυναμικού, ενώ τα δύο εξωτερικά αποτελούν τα ηλεκτρόδια ρεύματος. Ο μέγιστος αριθμός βαθών που επιτρέπεται να διερευνηθούν ισούται με 8, ενώ η μέγιστη απόκριση της διάταξης είναι συνάρτηση του ανοίγματος των ηλεκτροδίων (α). Έτσι η φαινόμενη ειδική ηλεκτρική αντίσταση ρ_a θα υπολογίζεται από την σχέση:

$$\rho_a = 2\pi. \left(\frac{1}{a - \frac{1}{2a}} - \frac{1}{2a} + \frac{1}{a} \right)^{-1} \frac{\Delta V}{i} = 2\pi a \frac{\Delta V}{i}$$

$\delta_\text{συστατικά} K = 2\pi. \left(\frac{1}{a - \frac{1}{2a}} - \frac{1}{2a} + \frac{1}{a} \right)^{-1} = 2\pi a$

Η ποσότητα K ονομάζεται γεωμετρικός συντελεστής και η τιμή του μπορεί να υπολογιστεί αν οι αποστάσεις των ηλεκτροδίων είναι γνωστές.

Κατά την εφαρμογή της διάταξης Wenner για ηλεκτρική βυθοσκόπηση, δηλαδή κατακόρυφη ηλεκτρική διασκόπηση, τα ηλεκτρόδια αναπτύσσονται κάθε φορά συμμετρικά ως προς ένα σημείο, που θεωρείται κέντρο της βυθοσκόπησης. Στην περίπτωση της ηλεκτρικής χαρτογράφησης το a παραμένει σταθερό και η όλη διάταξη μεταφέρεται σταδιακά κατά μήκος γραμμής βυθοσκόπησης. Η τιμή της φαινόμενης ειδικής ηλεκτρικής αντίστασης αντιστοιχεί στο κέντρο της διάταξης.

Η διάταξη Wenner μετατρέπει τη γεωμετρική της απλότητα παρουσιάζει ένα σημαντικό μειονέκτημα, αφού πρέπει να μετακινούνται όλα τα ηλεκτρόδια σε κάθε νέα μέτρηση.

β) Διάταξη Schlumberger

Στη διάταξη Schlumberger, τα ηλεκτρόδια ρεύματος A και B βρίσκονται σε απόσταση L και σε συμμετρικές θέσεις ως προς το κέντρο της διάταξης. Τα ηλεκτρόδια του δυναμικού M και N είναι ανάμεσα στα A και B και σε απόσταση b από το κέντρο της διάταξης.

Έτσι είναι $AB = 2L$ και $MN = 2b = l$, η απόσταση $2b$ μεταξύ των ηλεκτροδίων δυναμικού είναι πολύ μικρότερη από την απόσταση $2L$ μεταξύ των ηλεκτροδίων ρεύματος. Έτσι ο γεωμετρικός συντελεστής K θα υπολογίζεται από την σχέση:

$$K = 2\pi. \left(\frac{1}{L - b} - \frac{1}{L + b} - \frac{1}{L + b} + \frac{1}{L - b} \right)^{-1} = \pi \frac{(L^2 - b^2)}{2b}$$

και η φαινόμενη ειδική ηλεκτρική αντίσταση υπολογίζεται από τη σχέση:

$$\rho_a = \frac{\pi \cdot L^2}{2b} - \frac{\Delta V}{i}$$

Κατά την εφαρμογή της διάταξης Schlumberger για ηλεκτρική βυθοσκόπηση, τα ηλεκτρόδια δυναμικού παραμένουν σταθερά. Αντίθετα η απόσταση για τα ηλεκτρόδια ρεύματος αυξάνεται σταδιακά (με λογαριθμικό τρόπο) και συμμετρικά ως προς το κέντρο της διάταξης.

Στην ηλεκτρική χαρτογράφηση με τη διάταξη Schlumberger τα 4 ηλεκτρόδια μετακινούνται ταυτόχρονα, ενώ η σχετική τους απόστασή τους παραμένει σταθερή, όπως και στη διάταξη Wenner. Η διάταξη Schlumberger είναι η πιο διαδεδομένη για τη διεξαγωγή ηλεκτρικών βυθοσκοπήσεων. Αυτό οφείλεται κυρίως στο μικρό χρόνο πραγματοποίησης των μετρήσεων, επειδή αντίθετα με τις άλλες διατάξεις απαιτεί μετακίνηση μόνο των δύο ηλεκτροδίων ρεύματος κατά την γεωηλεκτρική βυθοσκόπηση. Τα ηλεκτρόδια του δυναμικού παραμένουν σταθερά, γεγονός που βοηθάει επίσης στον περιορισμό των ανεπιθύμητων επιδράσεων που μπορεί να οφείλονται σε πλευρικές μεταβολές των ειδικών ηλεκτρικών αντιστάσεων των πετρωμάτων.

g) Διάταξη Διπόλου-Διπόλου

Στην διάταξη Διπόλου-Διπόλου, τα ηλεκτρόδια ρεύματος απέχουν απόσταση ίδιου ανοίγματος, όσο απέχουν και τα ηλεκτρόδια δυναμικού, ενώ τα δίπολα μεταξύ τους έχουν πολλαπλάσια απόσταση.

d) Διάταξη πόλου-πόλου

Είναι τετράγωνη διάταξη των τεσσάρων ηλεκτροδίων. Η απόσταση τους αλλάζει από το ένα μέτρο, ώστε να μπορεί να χρησιμοποιηθεί για στόχους σε μεγαλύτερο βάθος.

101 Γιαννόπουλος 2014, 18.
102 Palmer 1960, 64-75.
5.5.Παραδείγματα εφαρμογής γεωηλεκτρικών διασκοπήσεων

1) Αποτύπωση της γεωλογικής δομής σε περιοχή του Δήμου Λακατάμιας με τη χρήση της ηλεκτρικής τομογραφίας.

Εικόνα 5.6: Ηλεκτρική τομογραφία104.

2) Γεωηλεκτρικές διασκοπήσεις στον μεγάλο τύμβο της Απολλωνίας (Ν. Θεσσαλονίκης) για την ανίχνευση κρυμμένων ταφικών μνημείων ή άλλες αρχαίες κατασκευές στο εσωτερικό του.

Εικόνα 5.7: Α) Φωτογραφία του μεγάλου τύμβου της Απολλωνίας που συνιστά ένα εντυπωσιακό μνημείο. Δεξιά (νοτιοδυτικά) του τύμβου υποδεικνύετε μέσος της επιφανειακής εμφάνισης αποθέσεων ανθρακικών αλάτων (τραβερτίνες). Β) Οι τομογραφίες που διεξήχθησαν στον τύμβο της Απολλωνίας διατάχθηκαν ακτινικά σε σχέση με το τεχνητό τοπογραφικό ύβαμα. Ο τύμβος έχει τέτοιο ύψος 19 m ενώ η βάση του είναι περίπου 50 m. Γ) Ηλεκτρική Τομογραφία στη διεύθυνση 015185 που σημειώνεται ως κίτρινο βέλος105.

104 Τσούρλος: Τσόκας & Τσούρλος 2017.
105 Τσόκας & Τσούρλος 2017.
Η ανασκαφή από την ΙΣΤ' ΕΠΚΑ (Εφορεία Προϊστορικών και Κλασικών Αρχαιοτήτων) το 2010 στο σημείο που βρίσκεται στο 34ο μέτρο κατά μήκος της τομογραφίας, εκεί δηλαδή όπου ευρίσκεται ανομαλία υψηλών αντιστάσεων, αποκάλυψε έναν συλλημένο μακεδονικό τάφο.

3) Παράδειγμα οργάνωσης των εργασιών υπαίθρου από το Ινστιτούτο Γεωργικών ερευνών Κύπρου για τη μέτρηση της ηλεκτρικής αγωγιμότητας σε περιοχή της Πάφου.

![Electrical tomography](image1.png)

Εικόνα 5.8: Ηλεκτρική τομογραφία.

4) Γεωφυσική έρευνα για τον εντοπισμό υπόγειας υδροφορίας στο Ανατολικό τμήμα της λεκάνης του Ανθεμούντα.

![Realization of 85 bathymetries](image2.png)

Εικόνα 5.9: Θέσεις πραγματοποίησης 85 βυθοσκοπήσεων στη λεκάνη του Ανθεμούντα Θεσσαλονίκης (Γεωλογικός χάρτης ΙΓΜΕ 1:50.000).

Εικόνα 5.10: Α) Αποτελέσματα επεξεργασίας της βυθοσκόπησης F70. (N, αριθμός στρώματος, ρ ειδική αντίσταση, h πάχος στρώματος, d βάθος έκτασης, Alt υψομετρική θέση)107.

Εικόνα 5.11: Κατακόρυφη γεωηλεκτρική τομή110.

Στην κατακόρυφη τομή (Εικόνα 5.11) είναι εμφανής η σταδιακή βύθιση του υποβάθρου (συνολικό άλμα 500 μέτρων). Στο κεντρικό τμήμα της τομής εντοπίζονται μεγάλου πάχους αργιλικά στρώματα (χαμηλές ηλεκτρικές αντιστάσεις), γεγονός που δημιουργεί δυσμενείς συνθήκες υπόγειας υδροφορίας, σε αντίθεση με την υπόλοιπη περιοχή όπου οι υψηλότερες ηλεκτρικές αντιστάσεις παραπέμπουν σε σχηματισμούς άμμων, χαλικιών και κροκάλων, όπου και αναμένεται υψηλή υδροφορία110.

107 Βεργεμέζης 2006, 50.
108 Βεργεμέζης 2006, 66.
109 Βεργεμέζης 2006, 75.
110 Βεργεμέζης 2006, 104.
5) Στο θέατρο Αρχαίας Άσκρης, Βοιωτία.

Η Άσκρη ήταν πόλη της Βοιωτίας χτισμένη στις νότιες πλαγιές του Ελικώνα, στην κοιλάδα των μουσών. Στους ιστορικούς χρόνους η πόλη ανήκε στο κράτος των Θεσπιών και ήταν η πατρίδα του μεγάλου επικού ποιητή της αρχαιότητας Ησίοδου. Μέρος του θεάτρου της αρχαίας Άσκρης είχε αποκαλυφθεί κατά τις ανασκαφές που έγιναν το 1890. Τον Νοέμβριο του 2012 πραγματοποιήθηκαν γεωφυσικές έρευνες στο θέατρο της αρχαίας Άσκρης που είχαν ως στόχο την ανίχνευση θαμμένων αρχαιοτήτων και η κατά το δυνατό χαρτογράφησή τους, μέχρι βάθους περίπου 5 m. Για την πραγματοποίηση της έρευνας χρησιμοποιήθηκε η μέθοδος της ηλεκτρικής χαρτογράφησης και η μέθοδος της ηλεκτρικής τομογραφίας. Η έρευνα κατέγραψε διαταραχές των γεωφυσικών πεδίων που προφανώς αντανακλούν την ύπαρξη υπεδαφικών δομών, οι οποίες πιθανά είναι θαμμένες αρχαίες αρχιτεκτονικά λείψανα. Κατά τη διεξαγωγή της ηλεκτρικής χαρτογράφησης ο χώρος κατατμήθηκε σε μικρά κελιά διατάσεων 20x20m και οι μετρήσεις πραγματοποιήθηκαν σε κάνναβα με ισοδιάσταση 1m, ο οποίος υλοποιήθηκε στο έδαφος για κάθε κελι χωριστά (Εικόνα 5.13). Η απόσταση μεταξύ των κινούμενων ηλεκτροδίων ήταν σταθερή και ίση με 0.5m, ενώ τα σταθερά ηλεκτρόδια ήταν τοποθετημένα σε απόσταση μεγαλύτερη των 15 m από τον εκάστοτε κάνναβο μετρήσεων και σε απόσταση 0.5 m μεταξύ τους.
Παρουσιάζονται γενικά, σχετικά μεγάλου μήκους γραμμικές θετικές ανωμαλίες με διεύθυνση B-N, οι οποίες σημειώνονται με τα γράμματα Α, Β και Γ. Οι ανωμαλίες αυτές στην κατανομή της υπεδάφιας ηλεκτρικής αντίστασης συνοδεύονται από ορατούς λιθοσωρούς.

Το γεγονός αυτό μας οδηγεί στο συμπέρασμα ότι και οι υπεδαφικές αντιστατικές δομές που προκαλούν τις θετικές αυτές ανωμαλίες είναι αντίστοιχης φύσης. Στο ίδιο συμπέρασμα καταλήγουμε και για τις ευθυγραμμίσεις των υψηλών τιμών αντίστασης που χαρακτηρίζονται από τα γράμματα Δ, Ε, Ζ, Η και Θ, όμως, στις θέσεις που αυτές παρατηρούνται δεν υπάρχουν επιφανειακές λιθοστοιβάζεις.

Οι ηλεκτρικές τομογραφίες πραγματοποιήθηκαν στις θέσεις όπου προηγούμενα είχαν ερευνηθεί με την εθνική ηλεκτρικής αντίστασης. Πρωταρχικός σκοπός της διεξαγωγής αυτού του τμήματος της έρευνας ήταν η διαλεύκανση της φύσης συγκεκριμένων στόχων, που είχαν ήδη εντοπιστεί με την εφαρμογή της ηλεκτρικής χαρτογράφησης. Επίσης, οι τομογραφίες στόχευαν στη μελέτη της γεωλογικής δομής σε βάθος μεγαλύτερο αυτών που αναμένεται να βρίσκονται θαμμένες οι αρχαιότητες. Για να εξασφαλιστεί η καλύτερη ποιότητα της μετρήσεως επιλέχθηκε η διάταξη μέτρησης διπόλου-διπόλου, η οποία χαρακτηρίζεται από καλή σχέση σήματος-θόρυβο και επαρκή διακριτική ικανότητα τόσο στις πλευρικές όσο και στις κατακόρυφες μεταβολές της υπεδάφιας αντίστασης.

Από τις κατανομές παρατηρήθηκαν πολλές μικρού μήκους κύματος θετικές ανωμαλίες, μέχρι του βάθους του 1m. Αυτό ήταν αναμενόμενο λόγω της ισχυρής ανομοιογένειας του εδαφικού καλύμματος το οποίο περιέχει κυλιόλιθους διαφόρων μεγεθών. Ομως από το βάθος του 1m και κάτω εμφανίζονται γραμμικές ανωμαλίες υψηλότερες, οι οποίες συνδυάζονται και σχηματίζουν καλά ορισμένα ορθογώνια γεωμετρικά σχήματα. Η μορφή των σχημάτων αυτών παραπέμπει σε κάτοψη αρχιτεκτονικών στοιχείων και ακριβώς αυτό το γεγονός μας οδηγεί στο συμπέρασμα ότι οι ανωμαλίες αντανακλούν την ύπαρξη τέτοιων στο υπέδαφος.

Από τις κατανομές παρατηρήθηκαν πολλές μικρού μήκους κύματος θετικές ανωμαλίες, μέχρι του βάθους του 1m. Αυτό ήταν αναμενόμενο λόγω της ισχυρής ανομοιογένειας του εδαφικού καλύμματος το οποίο περιέχει κυλιόλιθους διαφόρων μεγεθών.

Εικόνα 5.14: Κατανομή της ηλεκτρικής αντίστασης για βάθος 1.13m.

Κεφάλαιο 6
ΜΑΓΝΗΤΙΚΗ ΜΕΘΟΔΟΣ

Γενικά με τον όρο μαγνητόμετρο ονομάζεται κάθε κατάλληλο όργανο για τη μέτρηση στοιχείων του γήινου μαγνητισμού. Οι αρχές που αποτελούν και τη βάση της μεθόδου αυτής έχουν ρίζες σε βάθος πέντε αιώνων όταν ο Sir William Gilbert έκανε συστηματικές παρατηρήσεις του μαγνητικού πεδίου της γης και έδειξε ότι το αίτιο που η μαγνητική βελόνα της πυξίδα κατευθύνεται προς τον βόρειο πόλο της γης είναι διότι η ίδια η γη φαίνεται να συμπεριφέρεται σαν ένας τεράστιος μαγνήτης, ενώ το μαγνητικό πεδίο της γης είναι περίπου ισοδύναμο με αυτό που θα προερχόταν από μια μαγνητική ράβδο τοποθετημένη στο κέντρο της γης με προσανατολισμό κατά μήκος του άξονα περιστροφής της.

Το πρώτο μαγνητόμετρο κατασκευάστηκε από τον Karl Frederick Gauss το 1836 προκειμένου να μετρηθεί η μαγνητική απόκλιση. Πρόκειται για το όργανο εκείνο που ονομάσθηκε αργότερα «μαγνητικό θεοδολίδιο». Μαγνητόμετρα όμως θεωρούνται επίσης και η πυξίδα έγκλισης καθώς και ο γήινος επαγωγέας, δια του οποίου μετρώνται η έγκλιση και η απόκλιση, καθώς και η συσκευή που μετρά την οριζόντια συνιστώσα. Η πρώτη γεωφυσική έρευνα έγινε το 1843 από τον von Werde για τον εντοπισμό μεταλλευτικών κοιτασμάτων. Σήμερα οι μαγνητικές μέθοδοι διασκόπησης είναι εξαιρετικά διαδεδομένες καθώς τα αποτελέσματά τους λαμβάνονται πολύ γρήγορα και εύκολα χωρίς πολύπλοκες διαδικασίες.

Τα μαγνητόμετρα κατάλληλα τροποποιούμενα μπορούν να χρησιμοποιηθούν και ως βαριόμετρα, δηλαδή όχι μόνο για τις στιγμιαίες τιμές των τριών μεγέθων του γήινου μαγνητισμού, αλλά και τις μεταβολές τους.

6.1 Μαγνητόμετρο πρωτονίου

Το μαγνητόμετρο πρωτονίου μετρά πολύ μικρές αποκλίσεις του μαγνητικού πεδίου της γης, γεγονός που μας επιτρέπει να ανιχνεύουμε σιδηρά αντικείμενα στην ξηρά και τη θάλασσα, διαδικασία που αποκαλείται γεωφυσική διασκόπηση. Η γεωφυσική διασκόπηση έχει ως κύριο στόχο τη δημιουργία μιας σχετικά ακριβούς αποτύπωσης των θαμμένων «αντικειμένων» στο εσωτερικό του εδάφους μιας συγκεκριμένης περιοχής. Τα μαγνητόμετρα πρωτονίου χρησιμοποιούνται στην αρχαιολογία για την ανίχνευση και χαρτογράφηση κατακάθισμένων τοίχων και κτηρίων. Χρησιμοποιούνται, επίσης, στην υποβρύχια αρχαιολογία για τον εντοπισμό ναυαγίων, πολύ περισσότερο στον τομέα των αυτόνομων καταδύσεων για σύγχρονα ναυάγια με μεγάλη μάζα σιδήρου.

Η βασική δομή του μαγνητομέτρου πρωτονίου συνίσταται σε μια χάλκινη συνήθως ηλεκτραγώγιμη σπείρα που περιβάλλεται έναν κύλινδρο παραφίνης ή κηροζίνης, υλικά δηλαδή που είναι πλούσια σε πρωτόνια. Μετρήσιμο ηλεκτρικό ρεύμα εισάγεται στη σπείρα εξαιτίας της επαναδιεύθετης της πρωτονίου της παραφίνης, καθώς το μαγνητόμετρο περνά πάνω από εναλλασσόμενο μαγνητικό πεδίο.

112 Νεώτερον Εγκυκλοπαιδικόν Λεξικόν Ηλίου τ.12ος σ.721.
6.2. Αρχές μεθόδου

Η μαγνητική διασκόπηση βασίζεται στη μέτρηση της ολικής έντασης του, μαγνητικού πεδίου με το πρωτονικό μαγνητόμετρο, με ακρίβεια ±1 γάμμα. Πιο ευάσθητα και ταχύτατα μαγνητόμετρα είναι τα διαφορικά, όπου δύο ανιχνευτές που απέχουν μισό μέτρο σε κατακόρυφη διεύθυνση μετρούν τα μαγνητικά στοιχεία, λόγω της απόστασης που προκαλείται από την παρουσία εξωτερικού μαγνητικού πεδίου. Πλεονέκτημα τους είναι ότι δεν επηρεάζονται από χρονικές μεταβολές στο γεωμαγνητικό πεδίο όπως τα απλά πρωτονιακά μαγνητόμετρα. Πρόσφατα αλκαλικού τύπου μαγνητόμετρα είναι 10-100 φορές πιο ευάσθητα από τα προηγούμενα μετρώντας μαγνητικές ανωμαλίες μικρές όσο 0,001 νανοτέσλα (Nt)114.

Η θεμελιώδης παράμετρος που ελέγχει τις μεταβολές του μαγνητικού πεδίου είναι η μαγνητική επιδεκτικότητα των πετρωμάτων που δεν μεταβάλλεται μόνο μεταξύ διαφορετικών πετρωμάτων, αλλά μεταβολές συμβαίνουν και μέσα στο ίδιο πέτρωμα. O Coulomb (1785), έδειξε ότι η ελκτική ή απωστική δύναμη μεταξύ ηλεκτρικά φορτισμένων σωμάτων και μεταξύ μαγνητικών πόλων (P1&P2) δίνεται από τη σχέση:

\[F = \frac{1}{\mu} \frac{P_1 P_2}{r^2} \]

(όπου: \(\mu \) είναι μια σταθερά αναλογίας που καλείται μαγνητική διαπερατότητα, P1&P2 είναι οι έντασεις των δύο μονόπολων που αναφέρονται ως ποσότητες μαγνητισμού και \(r \) είναι η μεταξύ τους απόσταση)

Η ένταση (H) του μαγνητικού πεδίου, δηλαδή η μαγνητική δύναμη ανά ένταση μονοδιαίον πόλου που ασκείται από το μονόπολο \(P_1 \), υπολογίζεται από τη σχέση:

\[H = \frac{1}{\mu} \frac{P_1}{r^2} \]

Η μαγνήτιση που παράγει ένα υλικό όταν τοποθετηθεί μέσα σε μαγνητικό πεδίο καλείται μαγνητική επαγωγή. Η ένταση μαγνήτισης \(J \) καθορίζεται από την μαγνητική ροπή (M) ανά μονάδα έντασης (V):

\[J = \frac{M}{V} \]

Η μαγνητική επιδεκτικότητα \(k \) είναι μια αδιάστατη σταθερά που καθορίζεται από τις φυσικές ιδιότητες ενός υλικού και ορίζεται ως η ενός υλικού και ορίζεται ως \(\text{ως} 115\).

\[k = \frac{J}{H} \]

6.3. Επιδεκτικότητες Ορυκτών και Πετρωμάτων

Θαμμένα αρχαιολογικά απομεινάρια εντοπίζονται επειδή προβάλλουν μια τοπική ανωμαλία στην ένταση του μαγνητικού πεδίου, γενικά με τιμές που κυμαίνονται μεταξύ 1,25*10-16 και 0,25*10-14 Oe116.

Η μαγνητική επιδεκτικότητα από το υπέδαφος και το επιφανειακό έδαφος αναλογικά μονοδιαίον μεταξύ 2-15*103/4\pi emv/g και 100-3000*103 /4\pi emv/g αντίστοιχα σε θέσεις της Μ.Βρετανίας, τα εδάφη που περιέχουν κοκκινόχωμα προσφέρονται περισσότερο για διασκόπηση από τα ασβεστούχα εδάφη.

114 Λυριτζής Ι., 2007, 503-504.
115 Γιαννόπουλος 2014, 23-26.
116 Λυριτζής Ι., 2007, 503-504.
Τέλος κατά την ερμηνεία των μαγνητικών μετρήσεων θα πρέπει να ληφθεί υπόψη το γεγονός ότι κάποιο θαμμένο αρχαιολογικό μνημείο μπορεί να έχει πολύ χαμηλή μαγνήτιση, ώστε να μην παράγει αισθητή μαγνητική διαφοροποίηση 117.

Περισσότεροι στην εφαρμογή της μαγνητικής διασκόπησης είναι ότι: 1) το σήμα ελαττώνεται παρουσία ισχυρού τοπικού μαγνητικού πεδίου πάνω από 200nT και 2) μεταβαλλόμενα ηλεκτρικά πεδία (εναλλασσόμενο ρεύμα), παρεμπολούν το πλάτος του σήματος του ανιχνευτή που μετρίεται με ακρίβεια 0,04 Hz (μιας συχνότητας αρκετών χιλιάδων Hz) 118.

Εικόνα 6.1: Μαγνητικές επιδεκτικότητες των κυριότερων τύπων πετρωμάτων 119.

Η μαγνητική διαταραχή που συνδέεται με μεταλλικό σίδηρο είναι γνωστή, π.χ. από την απόκλιση μαγνητικής βελόνας που βρίσκεται κοντά σε σιδερένιο αντικείμενο. Αντίθετα, η μαγνητική διαφοροποίηση από θαμμένες αρχαιότητες είναι ασθενέστερη και οφείλεται στις ανεπαίσθητες μεταβολές μερικών εκατοστών και στα πετρώματα.

Συνοψίζοντας, μπορούμε να πούμε ότι υπεδάφια λείψανα της ανθρώπινης δραστηριότητας, με μαγνητικές ιδιότητες διαφορετικές από αυτές του περιβάλλοντος που φιλοξενούνται, αλλάζουν σε μικρό γεωνικό βαθμό το τοπικό μαγνητικό πεδίο. Αυτή η μικρή παραμόρφωση του μαγνητικού πεδίου παρατηρείται σαν “ανωμαλία” στις μετρήσεις. Περιοχές με αυξημένη μαγνήτιση (εξ’ επαγωγής ή παραμένουσα) σε σύγκριση με αυτή του περιβάλλοντος εδάφους παρουσιάζονται ως θετικές ανωμαλίες, ενώ περιοχές με μειωμένη μαγνήτιση παρουσιάζονται ως αρνητικές ανωμαλίες. Και τα δύο είδη αυξημένων είναι ενδιαφέροντα στη διδακτική ερμηνεία των μαγνητικών δεδομένων. Τάφροι, εστίες καύσης, αρχιτεκτονικές δομές ή συγκεντρώσεις οργανικού υλικού μπορούν να δημιουργήσουν ισχυρές (θετικές ή αρνητικές) μαγνητικές ανωμαλίες.

Καμένα υλικά, π.χ. κεραμική, κλίβανοι, εστίες, εκδηλώνουν τοπική αύξηση στην ένταση του μαγνητικού πεδίου αφού έχουν προσβλάβει μια ασθενή, όμως μόνιμη μαγνήτιση, τη θερμοπαραμέτρους μαγνήτιση, σαν αποτέλεσμα της θέρμανσης και αυξημένων ποσοστών μαγνητικής λόγω θέρμανσης. Τάφροι και λάκκοι παράγουν παρόμοια τοπική αύξηση μαγνήτισης.

117 Λυριτζής Ι., 2007, 504.
118 Λυριτζής Ι., 2007, 505.
αφοῦ το γέμισμά τους παρουσιάζει υψηλότερη μαγνητική επιδεκτικότητα από ότι το πέριξ υπέδαφος. Τοίχοι και δρόμοι κανονικά παράγουν μια τοπική μείωση, επειδή το υλικό του υπέδαφους από το οποίο κατασκευάζονται έχει χαμηλότερη από το γύρο ίζημα.

Τα ιζήματα οι πηλοί και τα πέτρωμα περιέχουν 1-10 % οξείδια του σιδήρου, ενώ η μέση τιμή τους στο εξωτερικό φλοιό της γης είναι 6,8%. Στην μαγνητική διασκόπηση τα σχετικά οξείδια στα αρχαιολογικά υλικά είναι ο αιματίτης (aFe\(\text{O}_3\)), ο μαγνητίτης (Fe\(\text{O}_4\)) και ο μαγκεμίτης (γ\(\text{Fe}_2\text{O}_3\)). Υφίστανται σαν μικροί κρύσταλλοι (μικρομαγνητίτες) που μαγνητίζονται αυθόρμητα\(^{120}\).

Η αυξημένη ίζημάτων σε σχέση με το υπέδαφος βασίζεται στη μετατροπή του οξειδίου του σιδήρου από τον ασθενή μαγνητικό τύπο «αιματίτη» στον ισχυρό μαγνητικό τύπο «μαγκεμίτη». Η μετατροπή αυτή γίνεται μέσω αναγωγής σε «μαγνητίτη» και ακολουθεί επανοξείδωση σε «μαγκεμίτη». Πρόκειται για τον κυρίαρχο μηχανισμό μέχρι 600ο\(^{12}\).

Με τη θέρμανση του υλικού σε υψηλές θερμοκρασίες η μαγνητική ροπή των μαγνητικών κρυστάλλων έχει καταρχάς τυχαίο προσανατολισμό. Κατά τη διάρκεια όμως της πτώσης της θερμοκρασίας αντικειμένου μετατρέπεται σε «μαγκεμίτη», το μέγεθος της οποίας εξαρτάται από το πλήθος των μαγνητικών οξειδίων. Σε αυτό το φαινόμενο βασίζεται και η μέθοδος του αρχαιομαγνητισμού\(^{121}\).

6.4. Λήψη μετρήσεων- Επεξεργασία μετρήσεων

Πριν αρχίσουν να πραγματοποιούνται μετρήσεις σε μεγάλης έκτασης αρχαιολογικό χώρο, πρέπει να λαμβάνονται υπ' όψιν η φύση, το μέγεθος και το βάθος των δομών που ανιχνεύονται όπως και η πιθανή ύπαρξη μεταλλικών αντικειμένων. Καλό θα ήταν ίσως να παίρνονται κάποιες μετρήσεις όπου υπάρχουν εμφανίσεις αρχαιολογικού ενδιαφέροντος, για να χρησιμοποιηθούν ως σημεία αναφοράς.

Μετά σχηματίζεται τετραγωνικός κάνναβος, συνήθως 1x1 μέτρο, με τη βοήθεια μετροταινιών και λέιζερ για την ακριβή χωροθέτηση. Αν λαμβάνονται οι μετρήσεις ταυτόχρονα από δύο μαγνητόμεταρα από το οποίο το ένα είναι ο σταθμός βάσης, τότε ειδικό λογισμικό διορθώνει τις μετρήσεις από το χρονικά μεταβαλλόμενο πεδίο της Γης λόγω ηλιακού ανέμου. Με ένα μαγνητόμετρο το διόρθωση γίνεται στο τέλος των μετρήσεων, αφού προηγουμένως έχει καταγραφεί η ώρα λήψης έκαστης μετρήσεως και έχουν ληφθεί συχνές μετρήσεις σε σταθερό σημείο βάσης\(^{122}\).

Επομένως, στην επεξεργασία των μετρήσεων με ένα πρωτογενές μαγνητόμετρο και γενικά στη λήψη μετρήσεων λαμβάνονται υπόψη τα ακόλουθα:

- Διόρθωση χρονικά μεταβαλλόμενου πεδίου.
- Κατευθυνόμενος ανιχνευτής.
- Σε υψηλά μαγνητικά πεδία, ανυψώνουμε τον ανιχνευτή 3-5 μέτρα πάνω από το έδαφος.

120 Λυριτζής Ι., 2007, 503-504.
122 Τσόκας et al. 2004, 11.
✓ Γενικά ο ανιχνευτής βρίσκεται σε όλες τις μετρήσεις πολύ κοντά (1 μέτρο) πάνω από το έδαφος.
✓ Αφαίρεση τοπικών βαθμίδων μαγνητικού πεδίου.
✓ Εξομάλυνση των οριζόντιων σαρώσεων.
✓ Αναγωγή- επεξεργασία των μετρήσεων με φίλτρα.
✓ Κατασκευή χαρτών κατανομής της μαγνητικής επαγωγής (με ισοεπαγωγικές ή χρώμα)123.

6.5. Παραδείγματα εφαρμογής

3) Διασκόπηση του νεολιθικού οικισμού στο χωριό Αυγή του Νομού Καστοριάς.

Η περιοχή κατατμήθηκε από την ερευνητική ομάδα του ΑΠΘ σε μεγάλα τετράγωνα (20x20m), στα οποία διαμορφώθηκε εσωτερικός κάνναβος (0.5x0.5m) για τη μέτρηση της βαθμίδας του ολικού μαγνητικού πεδίου.

123 Λυριτζής Ι., 2007, 506.
124 Τσόκας et al. 2004, 11.
Από την επεξεργασία των μαγνητικών μετρήσεων κατασκευάστηκαν ασπρόμαυρες εικόνες - χάρτες όπου τα αποτελέσματα παρουσιάζονται ως σχήματα τόνων του γκρι χρώματος έτσι ώστε να δίδεται μια εικόνα της κάτοψης των δομών που προκαλούν την ανώμαλη κατανομή των πρώτων κατακόρυφων διαφορών του μαγνητικού πεδίου. Επίσης όμως γεωμετρική αναγωγή των γεωφυσικών καναλιών στο τοπογραφικό σχέδιο της περιοχής, δηλ. τα αποτελέσματα υπερτέθηκαν στον τοπογραφικό χάρτη της περιοχής ύπαρξας χρήσιμοποιώντας ως υπόβαθρο την αποτύπωση της περιοχής σε ΕΓΣΑ 1987, δεδομένου ότι όλη η αρχαιολογική δουλειά έχει χαρακτηθεί σε αυτό το υπάρχον υπόβαθρο.

Στην Εικόνα 6.4, όπου και απεικονίζεται η κατανομή των πρώτων κατακόρυφων διαφορών του πεδίου, παρατηρήθηκαν αρνητικές γραμμικές ανωμαλίες (λευκοί τόνοι) μεγάλου μήκους. Αυτές εμφανίζονται με διεύθυνση περίπου ΒΒΔ-ΝΝΑ και εμφανίζονται να διατρέχουν όλο σχεδόν το χώρο έρευνας. Τα φαινόμενα αυτά οφείλονται σε αυλάκια (ορατά στην επιφάνεια). Τα αυλάκια ή οιαισδήποτε μορφής μικρά βυθίσματα του εδάφους παρουσιάζουν μετρήσιμες αρνητικές μαγνητικές ανωμαλίες που αντανακλούν έλλειψη μαγνητικού υλικού στις συγκεκριμένες θέσεις. Παρότι η παρουσία των φαινομένων αυτών ήταν έντονη στην έκταση της έρευνας, το γεγονός ότι ήταν εύκολα αναγνωρίσιμα δεν δημιούργησε προβλήματα στην ερμηνεία, δηλ. στην αναγνώριση εκείνων των ανωμαλιών που οφείλονται σε θαμμένες δομές αρχαιολογικού ενδιαφέροντος, οι οποίες εντοπίζονται στο μεγαλύτερο μέρος του ανατολικού τμήματος του χώρου.

Επίσης οι γραμμικές ανωμαλίες που εμφανίζονται στα κελιά Α146, Α202, Α262, Α140, Α84, Α258 και Α378 μπορούν επίσης να αποδοθούν σε πιθανές υπεδάφιες δομές που σχετίζονται με την παρελθούσα ανθρώπινη δραστηριότητα στο χώρο. Στην ίδια αιτία μπορούν να αποδοθούν και
ανωμαλίες κυκλικού σχήματος αλλά μικρών σχετικά διαστάσεων που είναι διάσπαρτες στο ίδιο χώρο.

Ιδιαίτερα σημαντικός ερμηνευτικός παράγοντας είναι το γεγονός ότι οι γραμμικές ανωμαλίες που θεωρούνται ότι αντανακλούν την πιθανή ύπαρξη θαμμένων δομών, εμφανίζονται σε συγκεκριμένη διεύθυνση (διεύθυνση ΔΒΔ-ΑΝΑ και η κάθετη σ’ αυτή).

Τέλος με σκούρους τόνους παρουσιάζονται κάποιες άλλες κυκλικές ή ακανόνιστου σχήματος ανωμαλίες οι οποίες μπορούν να θεωρηθούν ότι προκαλούνται από δομές που σχετίζονται με την δραστηριότητα στον νεολιθικό οικισμό126.

126 Τσόκας et al. 2004, 11-12.
Κεφάλαιο 7: ΣΕΙΣΜΙΚΗ ΜΕΘΟΔΟΣ

Η πρώτη σεισμική μέθοδος ήταν η μέθοδος της σεισμικής διάθλασης και στηρίχθηκε στο γεγονός ότι οι ταχύτητες των σεισμικών κυμάτων διαφέρουν από πέτρωμα σε πέτρωμα και οι ταχύτητες των απευθείας σεισμικών κυμάτων μπορούν να υπολογιστούν από τους χρόνους διαδρομής. Ο Mallet πραγματοποίησε τα πρώτα πειράματα σε περιοχές με ιζηματογενή και γρανιτικά πετρώματα και σχεδίασε το σεισμοσκόπιο, μια μετρητική διάταξη ευαίσθητη στις εδαφικές κινήσεις (μια λεκάνη με υδράργυρο, πηγή φωτός και ένας φακός). Έτσι το είδωλο της ανακλώμενης δέσμης επάνω στην επιφάνεια του υδραργύρου παραμορφώνεται όταν αυτή διαταραχθεί. Χρησιμοποιούνται δύο χρονόμετρα, το πρώτο για την μέτρηση του χρόνου της έκρηξης (παραγωγή σεισμικού κύματος) και το δεύτερο για την μέτρηση του χρόνου άφιξης του κύματος στο σημείο παρατήρησης. Από αυτά τα πρώτα πειράματα υπολογίστηκαν σχετικά μικρές ταχύτητες μετάδοσης (507 m/sec στο γρανίτη και 251 m/sec στο ψαμμίτη) που αργότερες βεβαίως όπως διαπιστώθηκε αντιστοιχούσαν στα επιφανειακά κύματα127.

Για να πραγματοποιήσει αυτές τις μετρήσεις ο Mallet τοποθέτησε μικρά δοχεία με υδράργυρο σε διάφορες αποστάσεις και σημείωσε το χρόνο που χρειάστηκε να αρχίσει ο κυματισμός στην επιφάνεια υδραργύρου μετά την έκρηξη128.

7.1. Κυριότερες σεισμικές μέθοδοι.

- Σεισμική Διάθλαση (Refraction Seismology): Στη μέθοδο της σεισμικής διάθλασης μετρώνται οι χρόνοι άφιξης της αρχικής εδαφικής κίνησης που παράγεται από μία πηγή, οι οποίοι καταγράφονται σε διάφορες αποστάσεις. Το σύνολο δεδομένων που λαμβάνονται αποτελείται από μία σειρά χρόνων συναρτήσεων. Οι χρόνοι αυτοί στη συνέχεια ερμηνεύονται σε σχέση με το βάθος των υπόγειων επιφανειών ασυνέχειας και τις ταχύτητες με τις οποίες η κίνηση ταξιδεύει μέσα στα στρώματα. Οι ταχύτητες αυτές ελέγχονται από ένα σύνολο φυσικών σταθερών, οι οποίες ονομάζονται ελαστικές παραμέτρους (elastic parameters), οι οποίες περιγράφουν το υλικό.

- Σεισμική Ανάκλαση (Reflection Seismology): Στη μέθοδο της σεισμικής ανάκλασης, εκτιμάται η ενέργεια που καταφθάνει μετά την αρχική εδαφική κίνηση. Ειδικότερα, η ανάλυση επικεντρώνεται στην εδαφική κίνηση, την οποία δημιουργούν σεισμικά κύματα που έχουν ανακλαστεί από τις υπόγειες επιφάνειες ασυνέχειας και τις ταχύτητες με τις οποίες η κίνηση ταξιδεύει μέσα σε κάθε στρώμα. Οι ταχύτητες αυτές ελέγχονται από ένα σύνολο φυσικών σταθερών, οι οποίες ονομάζονται ελαστικές παράμετροι (elastic parameters), οι οποίες περιγράφουν το υλικό.

127 Κωστίνης 2011, 43-52.
7.2. Πλεονεκτήματα και μειονεκτήματα μεθόδων

Τα πλεονεκτήματα των μεθόδων διάθλασης έναντι των μεθόδων ανάκλασης είναι τα εξής:

- Για τις σεισμικές παρατηρήσεις της διάθλασης γενικά χρησιμοποιούνται λιγότερες θέσεις για τις πηγές και τους δέκτες και επομένως είναι σχετικά πιο οικονομική η απόκτησή τους.

- Απαιτείται λίγη επεξεργασία των παρατηρήσεων της διάθλασης, με εξαίρεση την ροή του σεισμικού ήχου και το φιλτράρισμα που βοηθούν στη διαδικασία του προσδιορισμού των χρόνων άφιξης της αρχικής εδαφικής κίνησης.

- Επειδή χρησιμοποιείται ένα πολύ μικρό κομμάτι από την καταγραφόμενη εδαφική κίνηση, είναι εξίσου εύκολο όσο και για τις προηγούμενες γεωφυσικές μεθόδους να κατασκευαστούν μοντέλα και πιθανές ερμηνείες.

Τα μειονεκτήματα των μεθόδων διάθλασης έναντι των μεθόδων ανάκλασης αντίστοιχα είναι τα παρακάτω:

- Οι σεισμικές παρατηρήσεις της διάθλασης απαιτούν σχετικά μεγάλες αποστάσεις μεταξύ της πηγής και των δεκτών που καταγράφουν την εδαφική κίνηση.

- Η μέθοδος της διάθλασης είναι αποτελεσματική μόνον όταν η ταχύτητα διάδοσης της κίνησης μέσα στη Γη αυξάνεται με το βάθος.

- Οι σεισμικές παρατηρήσεις της διάθλασης γενικά ειρωνεύονται σε σχέση με σεισμοφυσικές μεθόδους και μπορούν να κατασκευαστούν μοντέλα και πιθανές ερμηνείες.

Τα πλεονεκτήματα των μεθόδων ανάκλασης έναντι των μεθόδων διάθλασης είναι τα εξής:

- Οι σεισμικές παρατηρήσεις της ανάκλασης συλλέγονται σε μικρές αποστάσεις μεταξύ της πηγής και των δεκτών που καταγράφουν την εδαφική κίνηση.

- Οι μέθοδοι της ανάκλασης λειτουργούν ανεξαρτήτως του τρόπου με τον οποίο η ταχύτητα διάδοσης της κίνησης μεταβάλλεται με το βάθος.

- Οι σεισμικές παρατηρήσεις της ανάκλασης μπορούν να ερμηνευθούν πιο άμεσα όσον αφορά στην πολυπλοκότητα της γεωλογίας.

- Οι σεισμικές παρατηρήσεις της ανάκλασης μπορούν να ερμηνευθούν πιο άμεσα όσον αφορά στην πολυπλοκότητα της γεωλογίας.

- Οι σεισμικές παρατηρήσεις της ανάκλασης χρησιμοποιούν όλη την ανακλώμενη κυματομορφή (δηλαδή το ιστορικό χρονικό της εδαφικής κίνησης σε διάφορες αποστάσεις της πηγής και του δέκτη).

- Τι ιστορικό χρονικό της εδαφικής κίνησης σε διάφορες αποστάσεις της πηγής και του δέκτη.

- Το υπέδαφος απεικονίζεται απευθείας από τις μετρήσεις που λαμβάνονται.

Τα μειονεκτήματα των μεθόδων ανάκλασης έναντι των μεθόδων διάθλασης αντίστοιχα είναι τα παρακάτω:

- Επειδή απαιτούνται πολλές θέσεις πηγών και δεκτών για την παραγωγή ισιών του υπεδάφους της γης με νόημα, η απόκτηση των σεισμικών παρατηρήσεων της ανάκλασης είναι πιο δαπανηρή.
Η σεισμική επεξεργασία της ανάκλασης απαιτεί εντατική χρήση εξειδικευμένου ηλεκτρονικού υπολογιστή και υψηλό επίπεδο εμπειρία. Επομένως, η επεξεργασία των παρατηρήσεων της ανάκλασης είναι σχετικά ακριβή.

Λόγω του τεράστιου όγκου δεδομένων που συλλέγονται, οι πιθανές περιπλοκές που οφείλονται στη διάδοση της εδαφικής κίνησης μέσω ενός πολύπλοκου μέσου, και οι περιπλοκές που προκαλούνται από κάποιες αναγκαίες απλοποιήσεις που απαιτούνται από το σχέδιό της επεξεργασίας των δεδομένων, η ερμηνεία των σεισμικών παρατηρήσεων της ανάκλασης απαιτεί μεγαλύτερη εξειδίκευση και γνώση της διαδικασίας.

Συμπερασματικά, οι μέθοδοι ανάκλασης πλεονεκτούν ως προς την απόκτηση ερμηνεύσιμων παρατηρήσεων πάνω από πολύπλοκες γεωλογικές δομές. Ωστόσο, το κόστος είναι μεγάλο. Επομένως, για τεχνικά και περιβαλλοντικά θέματα γενικά προτιμούνται οι μέθοδοι διάθλασης, ενώ στη βιομηχανία πετρελαίου χρησιμοποιούνται κατά κύριο λόγο οι μέθοδοι της ανάκλασης.

Μεταβολές στην ταχύτητα με την οποία τα σεισμικά κύματα διαδίδονται μέσα στη γη μπορούν να προκαλέσουν μεταβολές στις σεισμικές ταχύτητες πάνω από πολύπλοκες γεωλογικές δομές. Ωστόσο, το κόστος είναι μεγάλο. Επομένως, για τεχνικά και περιβαλλοντικά θέματα γενικά προτιμούνται οι μέθοδοι διάθλασης, ενώ στη βιομηχανία πετρελαίου χρησιμοποιούνται κατά κύριο λόγο οι μέθοδοι της ανάκλασης.

Επομένως, για τεχνικά και περιβαλλοντικά θέματα γενικά προτιμούνται οι μέθοδοι διάθλασης, ενώ στη βιομηχανία πετρελαίου χρησιμοποιούνται κατά κύριο λόγο οι μέθοδοι της ανάκλασης.

Πίνακας 7.1. Ταχύτητες κυμάτων σε διάφορα υλικά 129.
Εξοπλισμός για την εφαρμογή σεισμικών μεθόδων

Ο εξοπλισµός που απαιτείται για την εφαρμογή της σεισµικής μεθόδου είναι πολύπλοκος και ακριβός σε σχέση µε τις βαρυτοµετρικές, µαγνητικές και ηλεκτρικές µεθόδους. Ένα τυπικό σύστηµα απόκτησης σεισµικών δεδοµένων περιλαµβάνει τα εξής:

- Σεισµική πηγή (Seismic Source): Είναι συσκευές που διοχετεύουν σεισµική ενέργεια στο έδαφος. Μπορεί να διαφέρουν πολύ σε µέγεθος και πολυπλοκότητα. Τα χαρακτηριστικά τους είναι:

 - Πρέπει να είναι επαναληπτικές. Αυτό σηµαίνει ότι η φύση της ενέργειας που διοχετεύεται στο έδαφος (η ποσότητα και το χρονικό διάστηµα διάδοσης), δεν πρέπει να αλλάζει καθώς η πηγή χρησιµοποιείται σε διαφορετικές θέσεις.

 - Ο χρόνος διοχέτευσης της σεισµικής ενέργειας στο έδαφος πρέπει να είναι ελεγχόµενος.

 - Πρέπει να είμαστε σε θέση να ορίσουμε ακριβώς τη στιγµή που η πηγή διοχέτευσε την ενέργεια στο έδαφος. Σε άλλες, απλά ση µειώνουμε το χρόνο που η πηγή διοχέτευσε την ενέργεια.

- Γεώφωνα (Geophones): Είναι συσκευές που μπορούν να μετρήσουν την κίνηση του εδάφους που παράγεται από µία σεισµική πηγή. Τα γεώφωνα μετατρέπουν την εδαφική κίνηση σε ηλεκτρικά σήµατα (τάσεις) που καταγράφονται από µία ξεχωριστή συσκευή.

- Σύστηµα Καταγραφής (Recording system): Το σύστηµα αποθηκεύει την εδαφική κίνηση που καταγράφουν τα γεώφωνα. Ο αριθμός αυτός μπορεί να είναι αρκετά µεγάλος. Σήµερα είναι σύνθετες οι διασκοπήσεις για την έρευνα πετρελαίου να αποθηκεύουν την εδαφική κίνηση που καταγράφεται από 1000 σεισµόµετρα ταυτόχρονα. Για περιβαλλοντικές και ρηχές διασκοπήσεις διάθλασης, χρησιµοποιούνται συνήθως συστήµατα καταγραφής που είναι ικανά να καταγράψουν την εδαφική κίνηση συνήθως από 12 ή 24 γεώφωνα.

Η απόσταση µεταξύ των γεωφώνων και κατά συνέπεια το συνολικό µήκος του αναπτύγµατος ποικίλλει ανάλογα µε το είδος του προβλήµατος που θέλουµε να επιλύσουµε. Για τη διερεύνηση ρηχών δοµών, όπως είναι ικανός να καταγράψουµε την εδαφική κίνηση συνήθως από 12 ή 24 γεώφωνα. Η απόσταση µεταξύ των γεωφώνων είναι της τάξης εκατοντάδων ή και µερικών χιλιάδων µέτρων. Ο αέρας μπορεί να προέρχεται από τις παρακάτω πηγές:

- Μη Ελεγχόµενη Εδαφική Κίνηση: Οτιδήποτε προκαλεί την κίνηση του εδάφους, εκτός από τη δική μας πηγή παράγει θόρυβο. Όπως είναι αναµενόµενο, είναι µεγάλη η ποικιλία των πηγών που µπορούν να παράγουν αυτό το θόρυβο. Έτσι, πηγές του µπορεί να είναι η κίνηση οχηµάτων, αεροσκαφών, το ανθρώπινο περπάτηµα καθώς και µετεωρολογικά φαινόµενα. Ο αέρας µπορεί να
προκαλέσει θόρυβο με διάφορους τρόπους, αυτός όμως που μας ανησυχεί περισσότερο είναι η επίδρασή του στη βλάστηση. Αν η διασκόπηση πραγματοποιείται κοντά σε δέντρα, ο αέρας έχει σαν αποτέλεσμα να κινούνται τα κλαδιά και η κίνηση αυτή μεταδίδεται μέσω των κορμών των δέντρων στις ρίζες και από εκεί στο έδαφος.

- Ηλεκτρονικός Θόρυβος: Οτιδήποτε προκαλεί μεταβολές στο ηλεκτρικό σήμα του καλωδίου ή του συστήματος καταγραφής προκαλεί αλλοίωση των δεδομένων. Για παράδειγμα, χαλαρή ή βρώμικη σύνδεση μεταξύ των γεωφώνων και του καλωδίου ή μεταξύ του καλωδίου και του συστήματος καταγραφής μπορεί να προκαλέσει θόρυβο. Επίσης η υγρασία σε οποιοδήποτε σημείο του συστήματος είναι πηγή θορύβου. Επίσης ο άνεμος μπορεί επίσης να προκαλέσει θόρυβο εάν το καλώδιο κρέμεται από θάμνους και κινείται. Το καλώδιο είναι στην πραγματικότητα ένας μακρύς αγωγός. Καθώς κινείται μέσα στο μαγνητικό πεδίο της Γης, ηλεκτρικό ρεύμα παράγεται μέσα στο καλώδιο.

- Γεωλογικός Θόρυβος: Οποιοδήποτε είδος υπεδαφικού γεωλογικού σχηματισμού που μας είναι δύσκολο να απεικονίσουμε μπορεί να θεωρηθεί πηγή θορύβου.

Εικόνα 7.2. Αναπαράσταση εφαρμογής της σεισμικής μεθόδου130.

130 Κωστίνης 2011, 52.
7.4. Παραδείγματα εφαρμογής

✓ Εντοπισμός αρχαίου δρόμου στο Δίαυλο Λευκάδας με βυθόμετρο.

Σε βαθυμετρική τομή που έγινε στο Νότιο τμήμα του Διαύλου Λευκάδας, με απλό ηχοβολιστή επιφανείας, εντοπίστηκε η ύπαρξη πέτρινης κατασκευής σε βάθος 1.5 m, που πιθανά πρόκειται για αρχαίο δρόμο σύνδεσης της νήσου Λευκάδας με την Ακαρνανία ή για υποβρύχιο μέλο. Η περιοχή εντοπισμού βρίσκεται νότια του φρουρίου Ερπ και κοντά στη νότια είσοδο του Διαύλου.\(^{131}\)

Εικόνα 7.3. Εντοπισμός αρχαίας υποθαλάσσιας κατασκευής με ηχοβολιστή επιφανείας.

✓ Εντοπισμός του ναυάγιου του Μαζωτού με τομογράφο υποδομής πυθμένα.

Σύμφωνα με εκτιμήσεις των αρχαιολόγων το ναυάγιο του Μαζωτού ήταν ένα εμπορικό πλοίο της κλασικής περιόδου φορτωμένο με αμφορείς που περιείχαν ελληνικό κρασί. Πρόκειται για το αρχαιότερο ναυάγιο που εντοπίσθηκε στη ΝΑ λεκάνη της Κύπρου.\(^{132}\)

Εικόνα 7.4. α) Τυπική καταγραφή από τον τομογράφο υποδομής πυθμένα, όπου διακρίνεται το ναυάγιο. β) Από την οθόνη της κάμερας του ROV διακρίνονται οι αμφορείς του ναυάγιου.

Εικόνα 7.5. Φωτογραφικό μοτίβο του ναυάγιου

\(^{131}\) Αχιλλεόπουλος 1986, 13.
\(^{132}\) Κυριάκου 2010, 79, 85-86.
Κεφάλαιο 8: ΗΧΟΒΟΛΙΣΤΙΚΑ ΥΠΟΓΕΙΩΝ ΚΑΙ ΥΠΟΒΡΥΧΙΩΝ ΕΡΕΥΝΩΝ

Με τον όρο υποβρύχια αρχαιολογία εννοείται η μελέτη του παρελθόντος στο υποβρύχιο περιβάλλον. Σε ότι αφορά στα συμφραζόμενα της η υποβρύχια αρχαιολογία δε διαφέρει από τη χερσαία αρχαιολογία ως προς τους κανόνες διαχείρισης της αρχαιολογικής μαρτυρίας, ουσίως απαιτεί ιδιαίτερες δεξιότητες από τους εμπλεκόμενους αρχαιολόγους. Ο όρος χρησιμοποιείται ταυτόσημα σχεδόν με τον όρο θαλάσσια αρχαιολογία, ωστόσο στη θαλάσσια αρχαιολογία (απαντάται ως ναυτική αρχαιολογία) μελετώνται πλην όσων βρίσκονται στη θάλασσα και παράκτια πολιτισμοί ή εγκαταστάσεις.

Η υποβρύχια αρχαιολογία παρουσιάζει ισχυρή σχέση με τις γραπτές μαρτυρίες που προκύπτουν από την ενασχόλησή της με ιστορικές περιόδους. Οι υποβρύχιες αρχαιολογικές θέσεις, ωστόσο, της ιστορικής περίοδου είναι ένα μόνο τμήμα της υποβρύχιας αρχαιολογίας που διεξάγεται ακόμη και σε προϊστορικές θέσεις. Συνεπώς κρίνεται ως αδόκιμη η ιδιαίτερη έμφαση που έχει αποδοθεί στη σχέση της υποβρύχιας αρχαιολογίας με τη γραπτή τεκμηρίωση. Άλλωστε, η παραδοσιακή διαφοροποίηση ανάμεσα σε υποβρύχια, θαλάσσια, παράκτια και ναυτική αρχαιολογία έγινε με την ανάπτυξη της ιδέας του βυθισμένου υλικού πολιτισμού γενικότερα.

Η αρχαιολογία των ναυαγίων, ως τμήμα της υποβρύχιας αρχαιολογίας, ήταν κατά το παρελθόν επικράτεια των θαλάσσιων και των κλασικών αρχαιολόγων, οι οποίοι σε γενικές γραμμές έχουν πολύ διαφοροποιημένες αντιλήψεις για τους τύπους δεδομένων που επιθυμούσαν να συλλέξουν από τα υλικά κατάλοιπα των αρχαιολογικών θέσεων, γεγονός που προκάλεσε ευρείες συζητήσεις γύρω από φιλοσοφικά ζητήματα πολιτισμικής φύσης. Η κρισιμότητα, ωστόσο, ανάπτυξη της υποβρύχιας αρχαιολογίας συνέβη στην πεντηκονταετία 1950-2000 όταν οι αρχαιολόγοι άρχισαν να καταδύονται και να κατευθύνουν αρχαιολογικές αποστολές. Η άμεση επαφή τους με τα προβλήματα του υποβρύχιου περιβάλλοντος αλλά και η αυτοψία πολλών υποβρύχιων αρχαιολογικών θέσεων, φαίνεται πως απέδωσε καρπούς σε θεωρητικό και τεχνικό επίπεδο. Η δυνατότητα ανεύρεσης ανθρώπινων αντικειμένων του πρόσφατου ή απώτερου ιστορικού μας παρελθόντος, τα οποία βρίσκονται στους πυθμένες των θαλασσών, έχει ιδιαίτερη αξία και πολιτισμική σημασία. Σήμερα η ανάπτυξη των τεχνολογιών για τις έρευνες των θαλάσσιων πυθμένων έχει διαμορφώσει νέες προοπτικές για τον τομέα της αρχαιολογίας, ελλάδας βεβαιώς και τους διάφορους «κυνηγούς χαμένων θησαυρών». Τις τελευταίες δεκαετίες διεξάγονται πολλά τέτοια ερευνητικά προγράμματα σε ολόκληρο τον κόσμο με σημαντικές επιτυχίες. Π.χ. το 1989, το ερευνητικό πλοίο του Ωκεανογραφικού Ινστιτούτου Woods Hol, κατέγραψε ένα Ρωμαϊκό ναυάγιο, γνωστό ως Isis, κοντά στην όχθη Skerki, στο Τυρρηνικό Πέλαγος και ανέσυρε μεγάλο αριθμό αμφορέων και αντικειμένων, ενώ τον επόμενο χρόνο εξερεύνησε, με το βαθυσκάφος Jason, δύο βυθισμένα πολεμικά πλοία του 1812 στην λίμνη Οντάριο.

133 Muckelroy Keith 1978, 4.
Με βάση τις συζητήσεις των αρχαιολόγων και μηχανικών και τα συμπεράσματα από τα διάφορα προγράμματα υποθαλάσσιας έρευνας αρχαιοτήτων κατέστη σαφές ότι η ορθή αρχαιολογική πρακτική απαιτούσε την χαρτογράφηση των περιοχών και την ακριβή καταγραφή της τοποθεσίας και του προσανατολισμού των αντικειμένων πριν οποιαδήποτε μηχανική παρέμβαση όπως η αποκατάσταση ή η εκσκαφή.

Ορισμένοι ερευνητές εκείνη τη χρονική στιγμή είπαν πως αυτό θα ήταν αδύνατο. Τέτοιες ειρωνικές κριτικές διατυπώθηκαν τότε, τόσο από τα αντίπαλα στρατόπεδα των αρχαιολόγων, οι οποίοι δεν πίστευαν ότι θα μπορούσε να διεξάχθει επιστημονική ποιοτική δουλειά σε βαθιά νερά, όσο και από «τους κυνηγούς θησαυρών» οι οποίοι υποστήριξαν ότι αφού η σωστή αρχαιολογική εργασία ήταν αδύνατη σε μεγάλα βάθη, οι περιοχές θα ήταν ανοιχτές στον οποιοδήποτε είχε «συμπαθόσχοινο και κουβά».

Τελικά όμως, η ανάπτυξη της τεχνολογίας των βαθυσκαφών, δεν πέτυχε μόνο τη «νομιμοποίηση της επιστήμης», αλλά βοήθησε και στην προστασία της πολιτιστικής κληρονομιάς στα βαθιά νερά: έτσι που οι κυνηγοί θησαυρών θα μπορούσαν να μην χρησιμοποιούν πλέον τη δυσκολιά σαν δικαιολογία.

Έτσι το 1997, που επανεξέτασαν τη περιοχή Skerki με ένα εκσυγχρονισμένο βαθυσκάφος Jason, κατάφεραν να εφαρμόσουν ακριβείς μεθόδους χαρτογράφησης, καθώς και καταγραφής της θέσης των αντικειμένων δημιουργώντας 3-D απεικονίσεις υψηλής ανάλυσης.

Η εξεταζόμενη περιοχή προκαθορίζεται στο ερευνητικό πρόγραμμα, το οποίο αναπτύσσεται για να προσδιορίσει τους στόχους της έρευνας και τα ερωτήματα για το ανθρώπινο παρελθόν που θα πρέπει να απαντηθούν στην περιοχή που ερευνάται. Οι εικόνες του sonar είναι πολύ γνωστές για τις ασάφειές τους, κάνοντας τους ερευνητές να προσπαθούν να διαχωρίσουν ένα σωρό από βράχια από ένα σωρό με αμφορείς.

Όταν ορισθεί η περιοχή έρευνας, ορισμένα εργαλεία πρέπει να παραταχθούν για να συλλέξουν πληροφορίες. Αυτό το σκέλος είναι πιθανό να παραταχθεί εικόνας που χρησιμοποιείται για το σκοπό αυτό. Οι εικόνες του sonar είναι πολύ γνωστές για τις ασάφειές τους, κάνοντας τους ερευνητές να προσπαθούν να διαχωρίσουν ένα σωρό από βράχια από ένα σωρό με αμφορείς.

Όταν ορισθεί η περιοχή έρευνας, ορισμένα εργαλεία πρέπει να παραταχθούν για να συλλέξουν πληροφορίες. Αυτό το σκέλος είναι πιθανό να παραταχθεί εικόνας που χρησιμοποιείται για το σκοπό αυτό. Οι εικόνες του sonar είναι πολύ γνωστές για τις ασάφειές τους, κάνοντας τους ερευνητές να προσπαθούν να διαχωρίσουν ένα σωρό από βράχια από ένα σωρό με αμφορείς.

Ακόμη, τα αυτόνομα υποθαλάσσια οχήματα (AUV) που έχουν εξελιχθεί κατά την περασμένη δεκαετία και βελτιώνονται συνεχώς για τις ενεργειακές τους αποδόσεις για να ακολουθούν μια περιοχή με απότομη διάδρομο, να επιστρέφουν στην επιφάνεια για διόρθωση από το GPS και να ξεκινούν μια άλλη διάδρομο, είναι σίγουρα το κατάλληλο εργαλείο για αυτές τις αποστολές. Ομως το κριτήριο κόστους - οφέλους είναι ένας σημαντικός παράγοντας μιας τέτοιας επιλογής.

139 http://www.nareva.info/ssn_sonar/detection.htm
Όταν συλλεχθούν τα δεδομένα του ηχοβολιστή πλευρικής σάρωσης, κάποιος θα πρέπει να επιλέξει τις περιοχές ενδιαφέροντος και στη συνέχεια να επιστρέψουν σε αυτές για να προχωρήσουν σε αρχαιολογική εκτίμηση της σημασίας τους.

8.1. Βασικές αρχές

Είναι σημαντικές στην περίπτωση της υποβρύχιας αρχαιολογίας οι ιδιαιτερότητες αυτού που αποκαλείται στη χερσαία αρχαιολογία αρχαιολογική θέση. Σε πολλές περιπτώσεις τα αρχαία ναυάγια είναι συγκεντρώσεις αρχαιολογικής μαρτυρίας για παρελθόντες τρόπους ζωής, ωστόσο διατηρούν χρονολογική σχέση με άλλες αρχαιολογικές θέσεις που χρονολογούνται στην ίδια περίοδο και είναι δυνατόν να βρίσκονται σε ένα διαφορετικό περιβάλλον.

Τα ναυάγια, ωστόσο, δεν είναι οι μοναδικές αρχαιολογικές θέσεις στη θάλασσα. Αρχαιολογική θέση θεωρείται κάποια βυθισμένη πολιτεία ή βυθισμένα τμήματά της, βυθισμένα χωριά, προϊόντα νεότερης ανθρώπινης επέμβασης στη φυσική γεωγραφία, όπως είναι η δημιουργία φραγμάτων, καθώς επίσης και αεροσκάφη του Β’ Παγκοσμίου Πολέμου ή άλλων περιόδων που κατέληξαν για διάφορους λόγους στον πυθμένα μιας θαλάσσιας περιοχής. Αρχαιολογικές θέσεις νοούνται, επίσης, βυθισμένες σήμερα θέσεις αρχαίων πολιτισμών, κάτι που μελετήθηκε ιδιαίτερα στην περίπτωση της αυστραλιανής υποβρύχιας αρχαιολογίας.

8.2. Τα κύρια όργανα που χρησιμοποιούνται για τις ενάλιες έρευνες είναι:

Η υποβρύχια αρχαιολογία έχει αναπτύξει τις δικές της τεχνικές, σε ό,τι αφορά στον εντοπισμό, την καταγραφή της αρχαιολογικής θέσης και τις διαδικασίες ανασκαφής, αλλά αντλεί επίσης ευρέως από τις τεχνικές της χερσαίας αρχαιολογίας, σε ό,τι αφορά στις διαδικασίες καταγραφής και επαναξιολόγησης της αρχαιολογικής μαρτυρίας με εξαντλητικό σχεδιασμό, φωτογράφιση και επιθεώρηση.

8.2.1. Δορυφορικό σύστημα προσδιορισμού θέσης (GPS)

Ο ακριβής προσδιορισμός της θέσης του σκάφους είναι ιδιαίτερα σημαντικό για τις ενάλιες έρευνες και γι' αυτό το λόγο υπάρχουν τρεις μέθοδοι, που ανάλογα με τις απαιτήσεις των μετρήσεων, επιλέγουμε ποιο θα χρησιμοποιήσουμε. Ο εξοπλισμός που χρησιμοποιείται κατά τη διάρκεια της έρευνας, καθώς και η κλίμακα αποτύπωσης και σχεδίασης, επιλέγονται ανάλογα με την ακρίβεια των μετρήσεων:

Α) Η οπτική μέθοδος, της οποίας η χρήση περιορίζεται σε μικρής κλίμακας υδρογραφικές μελέτες στις οποίες είναι απαραίτητη η οπτική επαφή με την ακτή. Σ' αυτή τη κατηγορία υπάγονται οι μέθοδοι της πυξίδας, του εξάντα, του θεοδόλιχου και της στέγης.

Β) Οι ηλεκτρονικές μέθοδοι, όπου ο προσδιορισμός του στίγματος γίνεται με τη λήψη σημάτων (ηλεκτρομαγνητικών κυμάτων) που εκπέμπονται από σταθμούς που βρίσκονται σε συγκεκριμένα σημεία της ξηράς.

Γ) Η δορυφορική μέθοδος, όπου διακρίνεται: α) σε συστήματα στα οποία ο καθορισμός του στίγματος στηρίζεται στη μέτρηση της μεταβολής της συχνότητας από ένα δορυφόρο και β) σε συστήματα στα οποία το στίγμα υπολογίζεται από τη μέτρηση των αποστάσεων του δέκτη από 3 δορυφόρους.

140 Bowens, Amanda 2009, 15.
141 Staniforth Mark - Nash Michael 2006, 83-84.
Γνώμονα της μεθόδου για διάφορες θαλάσσιες έρευνες, αλλά και διασώσεις. Το GNSS αποτελείται από τρία τμήματα: το διαστημικό, το τμήμα ελέγχου και το τμήμα χρηστών. Κάθε δέκτης υπολογίζει μια τιμή για το σφάλμα του χρόνου και επομένως είναι σημαντικό ο χρόνος στα ρολόγια των δορυφόρων να είναι συγχρονισμένος με το GPS. Κάθε δορυφόρος έχει ένα άτομο ρολόι υψηλής σταθερότητας με μια γνωστή ή άγνωστη παρέκκλιση από το χρόνο GPS. Τα δορυφορικά ρολόγια ελέγχονται και διορθώνονται από τον κεντρικό σταθμό εδάφους και η διόρθωση αυτή θα περιλαμβάνει το μήνυμα που στέλνει ο δορυφόρος στους χρήστες. Κάθε δορυφόρος μήνυμα αποτελείται από κώδικες, που χρησιμοποιούνται για να διακρίνουμε τους δορυφόρους μεταξύ τους και να μετράμε την απόσταση, η ακρίβεια της οποίας είναι 15 - 30 cm.

Εάν, όμως, από την υπηρεσία άμυνας των ΗΠΑ ενεργοποιηθεί ο υποβιβασμός του σήματος με «εφαρμογή προγραμματισμένων τυχαίων μεταβολών», τότε η ακρίβεια μειώνεται στα ±100 μέτρα. Στην περίπτωση αυτή χρησιμοποιείται το δορυφορικό σύστημα DGPS χρησιμοποιείται για την αύξηση της ακρίβειας του εντοπισμού έως και 2 εκατοστά.

8.2.2.Βαθύμετρο

Όλα τα βυθόμετρα χρησιμοποιούν τεχνολογία σόναρ, η οποία αναπτύχθηκε κατά τον δεύτερο παγκόσμιο πόλεμο. Η τεχνολογία αυτή χρησιμοποιεί ηχητικά κύματα για να εντοπίζει το βάθος του πυθμένα αλλά και αντικείμενα μέσα στο νερό. Στη βαθυμετρία μπορούμε να μετρήσουμε το βάθος του πυθμένα με 3 τρόπους: α) με χρήση βολίδας ή βολιστικού κοντού, β) με τηλεπισκόπηση, γ) με ηχοβολιστικές συσκευές. Αναλυτικά:

Α) Η χρήση βολίδας ή βολιστικού κοντού είναι η πιο απλή από τις μεθόδους. Και χρησιμοποιείται για τις μέτρηση αβαθών περιοχών. Η βολίδα αποτελείται από λεπτή αλυσίδα 22 περίπου μέτρων και το άκρο της έχει κωνικό σχήμα βάρους 3 κιλών. Ο βολιστικός κοντός είναι μια ξύλινη ράβδος διαμέτρου 6cm και μήκος 4m. Τόσο στην αλυσίδα όσο και στην ράβδο, οι υποδιαιρέσεις σημειώνονται με διαφορετικοί χρωματισμοί.

Β) Οι μέθοδοι τηλεπισκόπησης στηρίζονται στο γεγονός ότι όλα τα αντικείμενα ακτινοβολούν ενέργεια σε διάφορα τμήματα της ηλεκτρομαγνητικής ακτινοβολίας ταυτόχρονα με την απ' ευθεία αντανάκλαση της ηλιακής ακτινοβολίας. Επομένως κάθε αντικείμενο έχει τη δική του «φασματική ταυτότητα», η οποία μπορεί να εκφραστεί με διαφορετική ακτινοβολία της ηλεκτρομαγνητικού φάσματος.

Τα όργανα που χρησιμοποιούνται στη μέθοδο τηλεπισκόπησης βρίσκονται είτε σε αεροπλάνα είτε σε δορυφόρους και ελέγχουν τα χαρακτηριστικά ακτινοβολίας τόσο για τα αντικείμενα μεταξύ τους, όσο και της κατάστασή τους. Η ακτινοβολία που χρησιμοποιείται θα πρέπει να διαπερνά την ατμόσφαιρα χωρίς σημαντικές απώλειες ενέργειας και επομένως τα όργανα

143 Κυριάκου 2010, 42.
της μεθόδου αυτής είναι σχεδιασμένα ώστε να λειτουργούν μόνο σε ορισμένα τμήματα κυμάτων του φάσματος.

Οι μέθοδοι τηλεπισκόπησης είναι η φωτοβαθυμετρία και οι ακτίνες λέιζερ.

Στην πρώτη ο προσδιορισμός γίνεται με φωτογραμμετρικές μεθόδους με τη λήψη αεροφωτογραφιών. Κάποιες φορές μπορούν να μετρήσουν μέχρι και βάθος 30 μέτρα εάν είναι ιδανικές οι συνθήκες. Οι φωτογραφικές μηχανές χρησιμοποιούν κυρίως το υπεριώδες φάσμα. Συχνά στο σκάφος υπάρχουν φωτογραφικές μηχανές με διαφορετικό τύπο φιλμ μεταβλητής ύλης για να υπολογίζονται χρόνοι κύματος των φωτογραφιών. Στη μέθοδο αυτήν ανήκουν οι ανιχνευτές «γραμμικής σάρωσης» και οι δορυφορικές φωτογραφίες.

Στους ανιχνευτές γραμμικής σάρωσης οι φωτογραφίες μοιάζουν με συνηθισμένες φωτογραφίες, αλλά διαφέρουν στο γεγονός ότι δεν προέρχονται από στιγμιαία έκθεση. Στους ανιχνευτές η ακτινοβολία συγκεκριμένη σε ένα περιστρεφόμενο κάτοπτρο, το οποίο ανιχνεύει την επιφάνεια της γης σε ζώνες. Χρησιμοποιεί εύρη φάσματος από το υπεριώδες μέχρι το υπεριώθορο. Η περιστροφή του είναι δεξιόστροφη ως προς τη διεύθυνση κίνησης του αεροπλάνου. Οι φωτογραφικές μηχανές με διαφορετικού τύπο φιλμ ή φίλτρα για να συγκεκριμένο είδος φάσματός.

Η δεύτερη μέθοδος τηλεπισκόπησης είναι με την χρήση ακτίνων λέιζερ. Οι παλμοί λέιζερ εκπέμπονται από αεροσκάφη και ανακλώνται από τον πυθμένα. Οι φωτογραφίες λαμβάνονται από το αεροσκάφος, υπολογίζεται ο χρόνος διάδοσης και μετρούν βάθη μέχρι 50m, με ακρίβεια ±30cm.

Τα συστήματα τηλεπισκόπησης χωρίζονται σε ενεργητικούς και σε παθητικούς δέκτες. Οι πρώτοι ακτινοβολούν τα αντικείμενα από δικιά τους πηγή ενέργειας και μετρούν την ακτινοβολία που ανακλάται από αυτά. Ενεργητικοί δέκτες είναι και τα λέιζερ. Οι δεύτεροι μετρούν την ακτινοβολία που εκπέμπεται από τα ίδια τα αντικείμενα από ανάκλαση της ηλιακής ακτινοβολίας. Παθητικοί δέκτες είναι η φωτογραφία και τα συστήματα γραμμικής σάρωσης.

Το βάθος υπολογίζεται με τη μέτρηση του χρόνου που χρειάζεται η ηχογράφηση του πυθμένα. Ο ήχος μπορεί να εκπεμπεί ήχο προς τον πυθμένα, είτε κατακόρυφα, είτε πλευρικά.

Γ) Οι ηχοβολιστικές συσκευές είναι η πιο συνηθισμένη μέθοδος. Αυτές μπορεί να είναι φορητοί ή μόνιμοι εγκαταστημένοι στο σκάφος. Έχουν την ικανότητα να εκπέμπουν ήχο προς τον πυθμένα και ανακλάται από τον πυθμένα και την επιστροφή του στον δέκτη (που συνήθως είναι ο ίδιος με τον πομπό).

Η ηχητική ενέργεια χρησιμοποιείται για την αποτύπωση των χαρακτηριστικών του πυθμένα. Αυτό γίνεται γιατί ο ήχος διαδίδεται στο νερό με χωρίς σημαντικές απώλειες λόγω απορροφήσεων. Ο ήχος παράγεται από τη διάδοση δονήσεων του αέρα, που ξεκινούν από μια ηχητική πηγή. Τα ηχητικά κύματα παρουσιάζονται σαν πυκνώσεις και αραιώσεις του αέρα. Η ταχύτητα του ήχου είναι η απόσταση που διανύουν τα ηχητικά κύματα ανά δευτερόλεπτο και αντιστοιχεί στο χρόνο που αποτελείται από τη διαδοχική διάδοση των δονήσεων και αντιστοιχεί στην ταχύτητα πολλαπλασιαζόμενη με το μήκος κύματος. Η ταχύτητα διάδοσης εξαρτάται από της θερμοκρασίας και της αλατότητας του νερού.

Η ταχύτητα διάδοσης διαφέρει από την ταχύτητα που διαδίδεται στο νερό και αυξάνεται με την ταχύτητα που διαδίδεται στο νερό. Η ταχύτητα διάδοσης του ήχου στο νερό είναι περίπου 1500m/s στους 15°C και αυξάνεται με την αλατότητα και τη θερμοκρασία.

144 Κυριάκου 2010, 44-46.
145 Κυριάκου 2010, 46.
Τα ηχοβολιστικά αποτελούνται από 4 βασικές μονάδες: α) τη γεννήτρια παλμών, β) τον ημιπλωτό πομποδέκτη, γ) τη δέκτη/ενισχυτή και δ) τη μονάδα καταγραφής.

α) Η γεννήτρια παλμών δημιουργεί ηλεκτρικό παλμό με συχνότητα ίδια μ’ αυτή που σχεδιάστηκε να λαμβάνει ο πομποδέκτης. Ο παλμός, μετά την έξοδό του από τον παλμογράφο, αυξάνεται σε ισχύ με τη βοήθεια ενισχυτή, πριν την είσοδό του στον πομποδέκτη. Η ισχύς του παλμού κυμαίνεται από μερικά W ως μερικά kW.

β) Ο ημιπλωτός πομποδέκτης έχει 4 βασικές λειτουργίες, που είναι

- o μετασχηματισμός της ηλεκτρικής ενέργειας σε ηχητική,
- η εκπομπή ηχητικής ενέργειας,
- η λήψη της ηχητικής ενέργειας που επιστρέφει, και
- o μετασχηματισμός της από ηχητική σε ηλεκτρική.

γ) Ο πομποδέκτης συγκεντρώνει την ηχητική ενέργεια σε ένα ηχητικό άξονα, έτσι ώστε η εκπομπή των ηχητικών κυμάτων να παρουσιάζει «κατευθυντικότητα». Ετσι, διαμορφώνεται μια δέσμη με σχήμα κόνου που αποτελείται από ένα κεντρικό λοβό και δευτερεύοντες λοβούς. Ανάλογα με την αρχή λειτουργίας τους, οι πομποδέκτες διακρίνονται σε μαγνητοεπικεφαλή και μαγνητοσυστολικά. Η ποιότητα τους ορίζεται από την ικανότητά τους να μετατρέψουν την ηλεκτρική ενέργεια σε ηχητική και από το εύρος των δευτερεύοντων λοβών, οι οποίοι είναι ανεπιθύμητοι.

δ) Ο δέκτης λαμβάνει το ασθενές ηλεκτρικό σήμα του πομποδέκτη, το οποίο ενισχύεται κατά μερικές χιλιάδες φορές πριν οδηγηθεί στην καταγραφική μονάδα. Η ενίσχυση του σήματος είναι ανάλογη του χρόνου λήψης του. Οι ανακλάσεις που προέρχονται από μικρότερες βάθη ενισχύονται αναλογικά περισσότερο από αυτές που προέρχονται από μεγαλύτερα βάθη. Η ευαισθησία του δέκτη είναι σχεδόν μηδενική αρχικά, ώστε να αποκόπτονται ή να μειώνονται σταδιακά οι ανακλάσεις που προέρχονται από πολύ κοντινούς στόχους. Η ευαισθησία του δέκτη είναι ανεξάρτητη του βάθους από το οποίο επιστρέφει το σήμα και εξαρτάται μόνο από τις ειδικότητες του επιπέδου ανάκλασης του, αφού στην μονάδα καταγράφονται οι ηλεκτρικοί παλμοί. Δηλαδή, η ευαισθησία του δέκτη είναι μεγάλης ευαισθησίας σε τοποθέτηση, είτε εξωτερικά είτε εσωτερικά του σκάφους. Επίσης, οι δέκτες πρέπει να είναι κατακόρυφα τοποθετημένοι και όσο πιο μακριά γίνεται από μηχανές, προπέλες και εμπόδια της γάστρας.

Η ισχύς σήματος που καταγράφεται είναι ενεργές, αφού στην μονάδα καταγράφονται οι ηλεκτρικοί παλμοί.

η) Η καταγραφή παλαιότερα γινόταν με βελόνα πάνω σε χαρτί, το οποίο ήταν υγρό ή ξηρογραφικό, ενώ σήμερα η καταγραφή γίνεται μέσω οθόνης που συνδεδεμένης με τα υπόλοιπα μέρη του συστήματος. Οι οθόνες μετριούνται σε "pixels" και απεικονίζουν άμεσα τις πληροφορίες του βυθομετρού. Όσο περισσότερα pixels έχει η οθόνη τόσο μεγαλύτερη ανάλυση και καθαρότερη εικόνα έχει. Αυτό επιτρέπει στον χρήστη να καταλαβαίνει πολύ πιο εύκολα την ποιότητα και δομή του βυθού, αλλά και τα ψάρια.

Η ποιότητα των ηχοβολιστικών συστημάτων εξαρτάται από τη διακριτική τους ικανότητα, η οποία ορίζεται ως το μισό του μήκους του παλμού. Εξαρτάται από το εύρος της ηχητικής δέσμης, τη γωνιά πρόσπτωσης, τη ποιότητα του καταγραφικού και τις ιδιότητες του επιπέδου ανάκλασης.

Εάν το σήμα δεν προσκρούσει σε κάποιο αντικείμενο στη διαδρομή του (πιθανά πάνω σε ψάρια), φτάνει στο βυθό. Ο μαλακός βυθός που αποτελείται κυρίως από άμμο και φύκια
απορροφάει ένα ποσοστό του σήματος έτσι ώστε η επιστροφή του να είναι αμυδρή. Ο σκληρός βυθός σε αντίθεση, (δηλαδή βράχια) έχει πολύ γρήγορη επιστροφή σήματος. Αυτές οι διαφορές στις ανακλάσεις του ηχητικού σήματος εμφανίζονται στην οθόνη του βυθομέτρου επεξεργασμένες για την καλύτερη κατανόηση του πυθμένα. Τα ψάρια στην οθόνη εμφανίζονται είτε σε ανεπεξεργασμένη μορφή σε «Τόξα», είτε ως σύμβολα (σε τρία μεγέθη) ψαριών.

Η καθαρότητα του νερού έχει άμεση σχέση με την ποιότητα του σήματος. Δυνατός άνεμος, ρεύματα ή κυματισμοί μπορούν να προκαλέσουν φυσαλίδες στο νερό με αποτέλεσμα να διακοπεί το σήμα. Επίσης μόρια ορυκτών, πλαγκτόν και άλλοι μικροοργανισμοί μπορούν να απορροφήσουν το ηχητικό σήμα και να μην το ανακλάσουν πίσω στην επιφάνεια.

Τα πιθανά σφάλματα μέτρησης βάθους με τους ηχοβολιστές είναι:

ο Σφάλμα βυθίσματος πομποδέκτη: στη μέτρηση του βάθους πρέπει να υπολογίζεται το βάθος βύθισης του πομποδέκτη, που δεν είναι το ίδιο σε όλα τα σκάφη, αλλά και στο ό,τι το σκάφος εξαρτάται από την κατάσταση φόρτωσης.

ο Σφάλμα καταγραφής: η επιφάνεια της θάλασσας θα πρέπει να ταυτίζεται πάντα με την οριζόντια γραμμή μηδενικού βάθους στην καταγραφή.

ο Σφάλμα λόγω κυματισμού: οφείλεται στις κατακόρυφες κινήσεις του σκάφους κατά τη διάρκεια κυματισμού: η διόρθωση είναι δύσκολη και για αυτό υπολογίζονται οι συχνότητες των κυμάτων ανάκλασης από τον πυθμένα.

ο Σφάλμα διαχωρισμού του πομποδέκτη: συμβαίνει όταν ο πομπός και ο δέκτης δεν βρίσκονται ενσωματωμένοι στην ίδια λειτουργία.

ο Σφάλμα καθίζησης και δυναμικής αγωγής: όταν το σκάφος κινείται δημιουργείται μια καθίζηση της θαλάσσιας επιφάνειας γύρω του και η διαφορά διαγωγής του σκάφους, όταν είναι κινούμενο και ακίνητο, καλείται δυναμική διαγωγή. Αυτό το σφάλμα είναι σημαντικό σε περιοχές με βάθη είναι μικρότερα από το επταπλάσιο του βυθίσματος του σκάφους.

ο Σφάλμα ταχύτητας του ήχου: η ταχύτητα διάδοσης του ήχου δεν είναι σταθερή, αλλά εξαρτάται από τη θερμοκρασία, την αλατότητα και την πίεση. Συνήθως χρησιμοποιείται ως ταχύτητα διάδοσης τα 1500m/s και η τιμή αυτή διορθώνεται είτε με τη χρήση νομογράμματος είτε από τον τύπο: V=1419,14+VT+VP+VSTP, όπου VT, VP, VSTP είναι πολυωνυμικές συναρτήσεις της θερμοκρασίας της πίεσης και της αλατότητας, αντίστοιχα.

ο Σφάλμα λόγω ανώμαλου ανάγλυφου: όταν ο πυθμένας παρουσιάζει ανώμαλο ανάγλυφο εξαιτίας του φαινομένου της περίθλασης και της αυξημένης γωνίας της ηχητικής δέσμης, ο πυθμένας καταγράφεται με μορφή υπερβολικών ανακλάσεων.
Τα ηχοβολιστικά συστήματα πολλαπλής ηχητικής δέσμης εκπέμπουν ταυτόχρονα πολλές ηχητικές δέσμες με συνέπεια τη ταυτόχρονη μέτρηση βάθους αιώρημα σημείων, σε αντίθεση με τα βυθόμετρα απλού τύπου, όπου εκπέμπεται μια ηχητική δέσμη και μετράται το βάθος ενός σημείου κάθε φορά. Έτσι, με τη κίνηση του σκάφους και τη συνεχιζόμενη εκπομπή πολλαπλής ηχητικής δέσμης επιτυγχάνεται η βυθομέτρηση, όχι μιας γραμμής, αλλά μιας ολόκληρης ζώνης.

Το πλάτος της ζώνης εξαρτάται από το εύρος του συνολικού κόνων της πολλαπλής ηχητικής δέσμης και αυξάνει με την αύξηση του εύρους του κόνων. Χρησιμοποιείται για όλα τα βάθη νερού μεγαλύτερα από τον κόνων, ενώ η ακρίβεια των μετρήσεων του καλύπτει τις απαιτήσεις του Διεθνούς Υδρογραφικού Οργανισμού. Η ακρίβεια επιτυγχάνεται με τον ακριβή έλεγχο και σταθεροποίηση των ακτίνων και με ταυτόχρονη αντιστάθμιση των φαινομένων κάμψεων των ακτίνων. Τα συστήματα αυτά είναι ιδανικά για την κατασκευή υδρογραφικών και γεωλογικών χαρτών, για επιστημονικές έρευνες και άλλες πολιτιστικές κληρονομικές κατασκευές ή περιοχών με οικονομικό ενδιαφέρον. Τα συστήματα αυτά θα πρέπει να υποστηρίζονται από συστήματα προσδιορισμού μεγάλης ακρίβειας.

8.2.3. Τομογράφος υποεπιφανειακής δομής του πυθμένα

Χρησιμοποιείται κυρίως για τη μελέτη γεωλογικών σχηματισμών κάτω από την επιφάνεια του πυθμένα (sub-bottom structures). Δίνει το βάθος (συν βυθόμετρο) και είναι χρήσιμος στη διαδικασία της υποθέσεως «θαμμένης κληρονομικής πολιτιστικής κληρονομικής» στην αρχαιοεπιστημονική ανάλυση έρευνα.

Γενικότερα, οι τομογράφοι μας δίνουν πληροφορίες όσον αφορά:

- τη γεωλογική υποδομή του πυθμένα
- τις φυσικές και γεωτεχνικές ιδιότητες των επιφανειακών ιχθυμάτων
- τη παρουσία υδρογονανθράκων στους πόρους των ιχθυμάτων και
- τη μορφολογία του πυθμένα κατά μήκος της τομής.

Η αρχή λειτουργίας τους είναι περίπου ίδια με των βυθομέτρων, αλλά εκπέμπουν όμως μικρής συχνότητας ακουστικά κύματα, τα οποία ανακλώνται μερικώς από την επιφάνεια του πυθμένα, ενώ τα διεισδύοντα ηχητικά κύματα ανακλώνται τμηματικά από τα υποπεριφερειακά στρώματα.

Τα επιστρέφοντα κύματα προσλαμβάνονται από τον δέκτη, ενισχύονται και καταγράφονται με τέτοιο τρόπο έτσι ώστε να σχετίζονται οι ανακλάσεις που προέρχονται από την ίδια ανακλαστική επιφάνεια. Έτσι, δημιουργείται ένα προφίλ του υποστρώματος, των γεωλογικών σχηματισμών και των οποιωνδήποτε άλλων αντικειμένων βρίσκονται στο υπόστρωμα, αλλά και πάνω από αυτό.
Το προφίλ καταγράφεται πλέον σε ψηφιακή μορφή, δίνοντας μας μια καλύτερη καταγραφή δεδομένων. Η τομογραφία που δημιουργείται μπορεί να συσχετιστεί με γεωλογική τομή με τη μόνη διαφορά ότι στη γεωλογική τομή τα γεωλογικά στρώματα καθορίζονται με τις οπτικές ιδιότητές τους ενώ στη τομογραφία υποδομής πυθμένα καθορίζονται με βάση τις ακουστικές ιδιότητές τους.

Για να είναι ένα σύστημα τομογράφου υποδομής πυθμένα αποτελεσματικό πρέπει να έχει εξαιρετική διεισδυτική ικανότητα και υψηλή διακριτική ικανότητα. Διατυπώνει η κατασκευή ενός ιδεατού πομπού που να εκπέμπει ηχητικά κύματα με αυτές τις απαιτήσεις δεν είναι εφικτό.

Ετσι, τα σύγχρονα συστήματα διακρίνονται σε:
- τομογράφους με υψηλή διακριτική ικανότητα και περιορισμένη διεισδυτική ικανότητα και σε
- τομογράφους με υψηλή διεισδυτική ικανότητα και περιορισμένη διακριτική ικανότητα.

Εικόνα 8.1. Οι τομογράφοι υποδομής πυθμένα αποτελούνται από ένα πομπό, ένα δέκτη, ένα ενισχυτή/φίλτρο και έναν καταγραφέα.

Η ποιότητα ενός τομογράφου αντανακλά στο μέγεθος της διείσδυσης και της κατακόρυφης και οριζόντιας διακριτικότητας. Κατακόρυφη διακριτικότητα θεωρείται η ελάχιστη απόσταση μεταξύ δύο στρώμάτων ώστε να καταγράφονται στη τομογραφία σαν ξεχωριστοί ανακλαστήρες, ενώ οριζόντια διακριτικότητα θεωρείται η ελάχιστη απόσταση μεταξύ 2 σημείων σε ένα επίπεδο ώστε να αναγνωρισθούν από τα ηχητικά κύματα σαν ξεχωριστά σημεία και να καταγραφούν σαν τέτοια.

Η μεγάλη διείσδυση χρειάζεται μια συσκευή που να εκπέμπει κύματα χαμηλών συχνοτήτων, γιατί τα κύματα υψηλών συχνοτήτων απορροφώνται εκλεκτικά από τα πετρώματα με αποτέλεσμα να ελαττώνεται η διεισδυτικότητα και η απόσβεση της ενέργειας λόγω εξάπλωσης του κύματος είναι αντίστροφα ανάλογη του τετραγώνου της συχνότητας.

Η μεγάλη διακριτικότητα απαιτεί μια συσκευή που να εκπέμπει κύματα με υψηλή συχνότητα και η διάρκεια του παλμού να είναι πολύ μικρή. Η ταυτότητα της πηγής έχει άμεση σχέση με την αναγνώριση των ανακλαστικών επιφανειών. Άρα σχετίζεται με την ποιότητα της τομογραφίας και την διακριτική της ικανότητα. Γνωρίζοντας το χαρακτήρα της ταυτότητας του παλμού και γνωρίζοντας τις μετατροπές που παθαίνει από το δέκτη και τον καταγραφέα μπορούμε να προσδιορίσουμε τη μετατροπή που υφίσταται ο χαρακτήρας του σήματος από την ανάκλαση του πάνω στην επιφάνεια ασυνέχειας.

146 Κυριάκου 2010, 51.
Στο εμπόριο υπάρχει ποικιλία τομογράφων υποδομής πυθμένα με διάφορα χαρακτηριστικά για να ανταποκρίνονται στις διάφορες ανάγκες των γεωλογικών και αρχαιολογικών ερευνών.

Οι τομογράφοι αυτοί ανάλογα με τη συχνότητα των ηχητικών κυμάτων που εκπέμπουν και τον τρόπο παραγωγής τους διακρίνονται σε:

- Ανιχνευτές χαλαρών ιζημάτων (pingers) που εκπέμπουν κατευθυντική δέσμη με εύρος γονίας βολής 20° - 50°. Η συχνότητα των κυμάτων εκπομπής κυμαίνεται από 3,5kHz μέχρι 7kHz και η χρονική διάρκεια παλμού από 0,5ms μέχρι 1ms. Η διεισδυτική ικανότητα των ανιχνευτών χαλαρών ιζημάτων κυμαίνεται 30-50m ανάλογα με την υφή του ιζήματος με διακριτική ικανότητα 0,3m. Οι τομογράφοι αυτοί χρησιμοποιούνται κυρίως για έρευνες σε χαλαρά ιζήματα χαμηλής πυκνότητας και μικρού πορώδους, όπως πηλοί και άργιλοι.

- Τομογράφοι Boomer: Αυτοί εκπέμπουν ηχητικό παλμό προς όλες τις κατευθύνσεις. Η συχνότητα των κυμάτων κυμαίνεται από 200Hz μέχρι 2kHz και η διάρκεια παλμού 0,4 μέχρι 0,8ms. Η διεισδυτική ικανότητα τους είναι 150m αλλά η διακριτική τους ικανότητα περιορίζεται στα 2m.

- Τομογράφοι Sparker: που εκπέμπουν ηχητικό παλμό προς όλες τις κατευθύνσεις και η παραγωγή παλμών επιτυγχάνεται με ηλεκτρική εκκένωση μέσα στο θαλάσσιο νερό. Η συχνότητα των κυμάτων που εκπέμπονται κυμαίνεται από 50 έως 2000Hz και η διάρκεια παλμού από 4ms έως 15ms. Ανάλογα με την ισχύ του συστήματος και τον τρόπο δημιουργίας του κύματος. Η διεισδυτική ικανότητα τους μπορεί να φτάσει μέχρι τα 1000m και η διακριτική τους ικανότητα κυμαίνεται από 2 έως 10m.

- Τομογράφοι Airgun (αεροβόλα): εκπέμπουν παλμούς προς όλες τις κατευθύνσεις. Η παραγωγή των παλμών επιτυγχάνεται με την ηλεκτρική εκκένωση του αέρα μέσα στο νερό. Οι συμπιεστές έχουν χωρητικότητα 10 - 2000in³ και ο αέρας εκτοξεύεται με πίεση από 20 έως 3000 in³/lb. Η συχνότητα των κυμάτων κυμαίνεται από 2Hz μέχρι 500Hz, η διάρκεια παλμού είναι από 4 μέχρι 15ms και η διεισδυτική τους ικανότητα κυμαίνεται από 100m μέχρι 700m (μέγιστη δυνατή διείσδυση τα 5000m).

Ανάλυση τομογραφιών

Η τομογραφία είναι βαθμοθετημένη σε ισόχρονες γραμμές. Από αυτήν βγάζουμε την οριζόντια και τη κατακόρυφη κλίμακα. Κατά την ερμηνεία των σεισμικών ανακλάσεων μιας τομογραφίας μεγάλη προσοχή πρέπει να δίνεται στην αναγνώριση των σεισμικών ανακλάσεων που προέρχονται από μη υπαρκτές επιφάνειες και στην αναγνώριση των μετατοπίσεων και παραμορφώσεων που υφίστανται σεισμικές ανακλάσεις που προέρχονται από κυμάτια από ένα σημείο. Μια σεισμική ανάκλαση από μια επιφάνεια ασυνέχεια καταγράφεται στην τομογραφία στη σωστή θέση της εφόσον η σεισμική κύμα κύμα έχει εκτελέσει την πορεία πομπός επιφάνειας - δέκτης. Συχνά όμως το σεισμικό κύμα μπορεί να εγκλωβιστεί μεταξύ δύο επιφάνειαν και να υφίσταται συνεχή ανάκλαση από τη μια επιφάνεια στην άλλη μέχρι να χάσει την ενέργειά του. Οι σεισμικές ανακλάσεις αναγνωρίζονται εύκολα διότι στην τομογραφία βρίσκονται σε διπλάσια ή τριπλάσια χρονική απόσταση από τη πραγματική σεισμική ανάκλαση.

147 Κυριάκου 2010, 50-51.
Μια άλλη περίπτωση ψευδοανακλάσεων είναι οι ανακλάσεις που προέρχονται από ένα πολύ μικρό αντικείμενο. Στην περίπτωση αυτή το αντικείμενο λαμβάνεται σαν σημείο, όπου τα προσπίπτοντα σεισμικά κύματα παθαίνουν περίθλαση. Οι ανακλάσεις που προέρχονται από το αντικείμενο αυτό δημιουργούν μια υπερβολή. Η υπάρξεις υπερβολών στη τομογραφία επιτρέπει την αναγνώριση και τον εντοπισμό αντικειμένων και ρηγμάτων. Όταν τα στρώματα σχηματίζουν ένα σύγκλινο, τότε οι ανακλάσεις από τις πλευρές του σύγκλινου καταγράφονται μετατοπισμένες και σχηματίζουν στη τομογραφία δύο επιφάνειες με αντίθετες κλίσεις.

8.2.4. Ηχοβολιστής πλάγιας σάρωσης (side scan sonars)

Οι ηχοβολιστές αυτοί αποτελούν μια κατηγορία των σόναρ που χρησιμοποιούνται για την αποτύπωση του θαλάσσιου πυθμένα (χαρτογράφηση), καθώς επίσης στην ανεύρεση ερειπίων, αρχαίων κατασκευών, θραυσμάτων, κλπ. Οι πληροφορίες που μας δίνουν συνδυάζονται με αυτές του βυθομέτρου και του τομογράφου υποδομής πυθμένα για καλύτερη αξιοποίησή τους. Για αρχαιολογικούς σκοπούς, οι ηχοβολιστές πλευρικής σάρωσης, παρέχουν άμεση και αποδοτική έρευνα σε μεγάλης περιμέτρου πυθμένα χωρίς καμία επιβλαβή επίδραση και αποτελούν ένα αποτελεσματικό προ-αναπτυξιακό εργαλείο στην αναγνώριση πυθμένων περιοχών ενδιαφέροντος, όπου η άμεση παρατήρηση δεν είναι εφικτή.

Μια μεγάλη ποικιλία ονομάτων απαντάται στη διεθνή βιβλιογραφία, τα οποία αναφέρονται σε συστήματα πλευρικού ηχοβολισμού. Το πρώτο όνομα ήταν «Asdic» λόγω της ομοιότητάς του με τα όργανα ανθυποβρυχιακού πολέμου που χρησιμοποιήθηκαν στο Β’ Παγκόσμιο πόλεμο. Άλλα ονόματα είναι τα: basdic, sideways asdic, sideways looking sonar, echo-ranger, horizontal echo-sounder και lateral echo-sounder. Το όνομα όμως που έχει πλέον καθιερωθεί είναι το «side scan sonar», το οποίο στην ελληνική βιβλιογραφία αποδόθηκε από τον καθ. Γ. Φερεντίνο (1985) ως «ηχοβολιστής πλευρικής σάρωσης» ενώ οι καταγραφές του (sonographs) αποδόθηκαν ως «ηχογραφίες»

Ο ηχοβολιστής πλευρικής σάρωσης αποτυπώνει με ηχητικά κριτήρια τη μορφολογία του πυθμένα και δίνει διαδικασίες απεικονίσεις της επιφάνειάς του. Το σύστημα του αποτελείται από 3 βασικά μέρη: τους ημιπλωτούς πομποδέκτες που τοποθετούνται στην ηχοβολιστική τορπίλη, το καλώδιο μεταφοράς του σήματος και συγχρόνως καλώδιο σύρσης και την καταγραφική μονάδα δύο καναλιών. 149

149 Λυριτζής 2007, 542-545.
8.2.5. Ηχοβολιστική τορπίλη πομποδεκτών (towfish):

Οι ηχοβολιστικές τορπίλες των διαφόρων ηχοβολιστών πλευρικής σάρωσης παρουσιάζουν σημαντικές διαφοροποιήσεις όσον αφορά τις διαστάσεις, το βάρος, τις δυνατότητες και τους χειρισμούς. Ηχοβολιστές που παρουσιάζουν μικρό εύρος σάρωσης του πυθμένα (έως 600m) έχουν ηχοβολιστικές τορπίλες μικρού μεγέθους (1m) και βάρους (25kg), ενώ αντιθέτως συστήματα που σαρώνουν μεγάλες εκτάσεις του πυθμένα (20-30km) διαθέτουν τορπίλες μεγάλου μήκους (10m) και βάρους (60ton.) που απαιτούν μεγάλα σκάφη και ειδικές διατάξεις για τη ρίψη τους στη θάλασσα. Οι μικρού μεγέθους ηχοβολιστικές τορπίλες, που έχουν ευρεία εφαρμογή, είναι υδροδυναμικά σχεδιασμένες και διαθέτουν ουραία σκάφη καθώς αναπτύσσονται σιδηροστεγές τμήμα για το ειδικό σύστημα πρόσδεσης του καλωδίου σύρσης - ανόδου, υδατοστεγές τμήμα για το υλικό τους μέρος, ενώ πλευρικά τοποθετούνται οι δύο πομποδέκτες.

Οι δύο πομποδέκτες είναι τοποθετημένοι στις πλευρές της υδροδυναμικά σχεδιασμένης, μεταλλικής τορπίλης μήκους 1m, έτσι ώστε να σαρώνουν ηχητικά τον πυθμένα πλευρικά της πορείας της, καθώς αυτή σφηνίζεται πίσω από το σκάφος.

Η διάταξη των πομποδεκτών εκπέμπει συνήθως σε δύο συχνότητες με δυνατότητα επιλογής της συχνότητας από τη καταγραφή μονάδα. Υψηλή συχνότητα απαιτείται για λεπτομερή αποτύπωση του πυθμένα ενώ χαμηλή συχνότητα για σάρωση μεγάλου εύρους.

Ο εκπεμπόμενος παλμός έχει διάρκεια 0,1 millisecond για τις χαμηλές και μέσες συχνότητες και διάρκεια 0,01 millisecond για τις υψηλές συχνότητες. Οι παλμοί σχηματίζουν ηχητική δέσμη, η οποία δημιουργεί ηχητικά κύματα τα οποία παρουσιάζουν τη μεγαλύτερη διακρίτητη ικανότητα για δεδομένη συχνότητα. Η διαστάσεις της ηχητικής δέσμης καθώς και το χώρο που εκπέμπεται καθορίζεται από τη συχνότητα και το μήκος της τορπίλης. Η γωνία της ηχητικής δέσμης καθώς και το κατακόρυφο επίπεδο είναι περίπου 50⁰. Οι πομποδέκτες είναι συνήθως στραμμένοι προς τα κάτω, ώστε να σχηματίζουν κατακόρυφο γονία καθορισμού άξονα 10⁰, 15⁰, ή 20⁰. Με αυτό τον τρόπο ο σχηματιζόμενος κύριος λοβός επιτυγχάνει αποτελεσματικότερη ηχητική σάρωση του πυθμένα. Ο σχηματισμός της ηχογραφίας οφείλεται στην ανάκλαση των ηχητικών κυμάτων που εκπέμπονται από τον κύριο λοβό και οι δευτερεύοντες λοβοί που επίσης αναπτύσσονται. Ο δευτερεύων λοβός είναι ασθενέστερος και σε περιοχές όπου επικαλύπτεται με τον κύριο λοβό προκαλείται δραματική μείωση της διακριτικής ικανότητας του συστήματος. Επιπλέον οι δευτερεύοντες λοβοί δίνουν μια τομή στον πυθμένα κατά μήκος της πορείας της τορπίλης, ενώ καταγράφουν κάθε στόχο που βρίσκεται στην υδάτινη στήλη κοντά σε αυτή. Η γεωμετρία του εκπεμπόμενου λοβού καθορίζεται σύμφωνα με τις σχέσεις:

\[\theta_3 = \frac{\lambda}{L} \Lambda \alpha_3 = \frac{\lambda}{l} \]

(όπου \(\lambda \) το μήκος κύματος, \(L \) και \(I \) είναι οι διαστάσεις του προβολέα του πομποδέκτη)
Σε αναλογία με τα απλά βυθόμετρα, τα οποία συλλέγουν σημειακή πληροφορία για καθεμία εκπομπή παλμού, ο ηχοβολιστής συλλέγει πληροφορίες κατά μήκος μιας γραμμής δεξιά και αριστερά του άξονα της τορπίλης. Αυτό συμβαίνει διότι ο εκπεμπόμενος παλμός διαμορφώνεται σε κατακόρυφο επίπεδο το οποίο σαρώνει ηχητικά τον πυθμένα και την υδάτινη στήλη. Οι πομποδέκτες μέχρι την εκπομπή του επόμενου παλμού δέχονται τα ανακλώμενα ηχητικά κύματα τόσο από τον πυθμένα όσο και από την υδάτινη στήλη. Είναι φανερό ότι οι ανακλάσεις που προέρχονται από περιοχές του πυθμένα κοντά στην τορπίλη φθάνουν γρηγορότερα στους πομποδέκτες από αυτές που προέρχονται από μεγαλύτερες αποστάσεις. Οι ανακλάσεις από ένα παλμό καταγράφονται κατά μήκος του πυθμένα σαφώς πιο γρήγορα από αυτές που προέρχονται από μεγαλύτερες αποστάσεις. Οι ανακλάσεις που προέρχονται από περιοχές του πυθμένα κοντά στην τορπίλη φθάνουν γρηγορότερα στους πομποδέκτες από αυτές που προέρχονται από μεγαλύτερες αποστάσεις. Οι ανακλάσεις από ένα παλμό καταγράφονται κατά μήκος μιας γραμμής ως ανοιχτόχρωμα και σκουρόχρωμα τμήματα, αναλόγως της έντασης της, τα οποία αποτελούν σημαντικές ομοιότητες με την τηλεόραση, η οποία στοιχειοθετείται από εκατοντάδες κατακόρυφες γραμμές, χωρίς καθεμία ξεχωριστά να μπορεί να πληροφορήσει το θεατή. Η καταγραφική μονάδα περιέχει ένα μεγάλο μέρος του ηλεκτρονικού τμήματος καθώς και το μηχανισμό καταγραφής. Το ηλεκτρικό ρεύμα που προκαλείται από την αλλαγή σήματος του πομποδέκτη όταν προσπέσουν στον τορπίλη ανακλασθέντα ηχητικά κύματα, τροφοδοτεί στις καταγραφικές βελόνες (παλαιότερα) οι οποίες παράγουν καταγραφικά ίχνη πάνω σε ηλεκτρευαίσθητο χαρτί ξηρού ή υγρού τύπου. Τα σύγχρονα συστήματα είναι συνδεδεμένα με υπολογιστή, ο οποίος καταγράφει τα ηχητικά σήματα και προβάλει τα τιμητικά σήματα στην οθόνη του. Η ένταση της εκκίνησης του ηχοβολιστή παρουσιάζει σημαντικές ομοιότητες με την τηλεόραση, η οποία στοιχειοθετείται από εκατοντάδες κατακόρυφες γραμμές, χωρίς καθεμία ξεχωριστά να μπορεί να πληροφορήσει το θεατή.
καταγραφικών μονάδων επέτρεψε την επιπλέον καταγραφή, εκτός των σημάτων από τους δύο πομποδέκτες της βυθομετρικής τομής κατά μήκος της πορείας της τορπίλης. Η βυθομετρική τομή που στοιχειοθετείται από το τρίτο κανάλι, δεν συνιστά τυπική βυθομετρική τομή από την οποία εξάγονται ασφαλή συμπεράσματα για το βάθος και τη μορφολογία του πυθμένα. Αυτό συμβαίνει επειδή το επιφανειακό ίχνος της τομής δεν ανταποκρίνεται στην επιφάνεια της θάλασσας αλλά στη θέση της τορπίλης. Συνεπώς βυθομετρικές μεταβολές της επιφάνειας του πυθμένα είναι δυνατόν να είναι αποτέλεσμα της μεταβολής του ύψους πτήσης της τορπίλης. Συνεπώς βυθομετρικές μεταβολές της επιφάνειας του πυθμένα είναι δυνατά να είναι αποτέλεσμα της μεταβολής του ύψους πτήσης της τορπίλης. Το τρίτο κανάλι του καταγραφικού μπορεί να χρησιμοποιηθεί για την λήψη και καταγραφή δεδομένων τα οποία δεν προέρχονται από την εκπομπή ηχητικών παλμών. Η σύγχρονη λήψη ηχητικών και μαγνητικών δεδομένων από ηχοβολιστή πλευρικής σάρωσης και μαγνητόμετρο αντίστοιχα, είναι μια συνήθης πρακτική ιδιαίτερα στις έρευνες για τον εντοπισμό ναυαγίων 150.

Οι σύγχρονοι ηχοβολιστές πλευρικής σάρωσης έχουν την δυνατότητα να απαλείψουν από την καταγραφή τις λευκές ζώνες που αντιστοιχούν στην υδάτινη στήλη. Τα πλεονεκτήματα αυτού του τρόπου καταγραφής είναι: α) η απαλοιφή της συμπίεσης που υφίσταται η αποτύπωση του πυθμένα εξαιτίας της σπατάλης τμήματος καταγραφικού χαρτιού για την καταγραφή της υδάτινης στήλης (παλαιότερα, αφού τώρα χρησιμοποιείται ηλεκτρονικός υπολογιστής στη θέση του καταγραφικού χαρτιού) και β) οι καταγραφές δίνουν μια περισσότερο ακριβή ιδιαίτερα στην απόφαση της τορπίλης κάτω από την τορπίλη. Αυτό όμως αντιμετωπίσθηκε με την ανάπτυξη του τρίτου καναλιού, στο οποίο καταγράφεται η υποκείμενη της τορπίλης της υδάτινης στήλης 151.

8.2.6. Θαλάσσιο μαγνητόμετρο:

Το θαλάσσιο μαγνητόμετρο εντοπίζει αποκλίσεις στο ολικό μαγνητικό πεδίο της Γης. Αυτές οι αποκλίσεις μπορεί να προκαλούνται από την παρουσία σιδηρούχων υλικών πάνω ή κάτω από τα γεωλογικά χαρακτηριστικά του πυθμένα ή από ημερήσιες αποκλίσεις στο μαγνητικό πεδίο της Γης εξαιτίας της ηλιακής ακτινοβολίας. Αντίθετα μιουέντεκτημα του τρόπου αυτού καταγραφής, είναι το γεγονός ότι καθίσταται αδύνατη η απόκριση στοιχεία στην υδάτινη στήλη κάτω από την τορπίλη. Αυτό όμως αντιμετωπίσθηκε με την ανάπτυξη του τρίτου καναλιού, στο οποίο καταγράφεται η ηπατάμενη της τορπίλης της υδάτινης στήλης 151.

Η μέθοδος χρησιμοποιείται κυρίως στο τομέα της αρχαιολογίας κατά τη διάρκεια προκαταρκτικών ερευνών του πυθμένα. Τα ελαφριά και φορητά μαγνητόμετρα μπορούν εύκολα να μεταφερθούν σε σχεδόν όλες τις περιοχές έρευνας. Στην αρχαιολογία τα μαγνητόμετρα μπορούν να χρησιμοποιηθούν για να βρούνε θαμμένους τάφους που περιέχουν μεταλλικά τεχνογραφήματα σε

150 Κυριάκού 2010, 56.
151 Κυριάκού 2010, 53-57.
152 http://www.wessexarch.co.uk/projects/marine/alsf/wrecks_seabed/magnetometer.html
στρατιωτικές εργασίες τα μαγνητόμετρα χρησιμοποιούνται για τον εντοπισμό ντεπόζιτων, ναρκών και άλλων τέτοιων αντικειμένων. Η έρευνα με μαγνητόμετρο μπορεί να χρησιμοποιηθεί μόνο με αυτό ή σε συνδυασμό με υδρογραφικές, αρχαιολογικές ή και περιβαλλοντικές έρευνες.

Το πρώτο μαγνητόμετρο ανακαλύφθηκε το 1832 και από τότε το πρωταρχικό σχέδιο βελτιώθηκε από πολλούς ερευνητές (Carl Friedrich Gauss, Wilhelm Weber, Nikola Tesla, Hans Lundberg, Baule and McFee, David Cohen, κ.ά.). Οι θαλάσσιες έρευνες έγιναν ευκολότερες με τη χρήση του μαγνητομέτρου και η ενάλια αρχαιολογία έχει ακόμη ένα όργανο στα χέρια της που μπορεί να αξιοποιήσει στο μέγιστο βαθμό για τις ανακαλύψεις της.

Υπάρχουν δύο τύποι μαγνητομετρίων. Ο πρώτος ονομάζεται βαθμωτός (scalar) και μετρά την ένταση του μαγνητικού πεδίου. Ο δεύτερος ονομάζεται διανυσματικός (vector) και μετρά τη διεύθυνση του μαγνητικού πεδίου.

Τα μαγνητόμετρα πουκάλλουν στην εξωτερική εμφάνιση επειδή υπάρχουν διάφορα μοντέλα διαθέσιμα. Ασχέτως με το πώς μοιάζει εξωτερικά τα μαγνητόμετρα είναι σχεδιασμένα για να είναι φορητά. Αυτό επιτρέπει το χρήστη να το μεταφέρει σε οποιοδήποτε περιοχή είναι απαραίτητη η μέτρηση μαγνητικού πεδίου. Ένα φθηνό και φορητό μαγνητόμετρο είναι το Proton precession magnetometer που χρησιμοποιείται κυρίως κοντά στην επιφάνεια για περιβαλλοντικές και μηχανολογικές έρευνες και θεωρείται ιδανικό για την έρευνα ναρκών και τη χαρτογράφηση αγωγών.

Κβάντο – Μαγνητόμετρα: χρησιμοποιούνται ευρέως στη ανίχνευση όπλων, στις περιβαλλοντικές έρευνες, στις γεωφυσικές εξερευνήσεις και σε άλλες επιστημονικές εφαρμογές.

Τα διανυσματικά (vector) μαγνητόμετρα: η μαγνητική διακύμανση εκτός από μέτρο, έχει και διεύθυνση (διάνυσμα). Τα διανυσματικά μαγνητόμετρα μετρούν το μαγνητικό πεδίο σε μια συγκεκριμένη διεύθυνση. Αυτά τα όργανα παρέχουν πιο ακριβή αποτελέσματα της μαγνητικής διακύμανσης με το να αποκλείουν αντίθετες ευαισθησίες και να χειρίζονται σε χαμηλό επίπεδο θορύβου.

Τα Fluxgate μαγνητόμετρα μετρούν συγκεκριμένα διανύσματα στο μαγνητικό πεδίο. Δεν είναι απόλυτα και πρέπει να είναι βαθμονομημένα.

Τα Κρυογονικά (Cryogenic) ή Μαγνητόμετρα-Καλαμάρια (Squid Magnetometers) είναι συγγενή με τα διανυσματικά μαγνητόμετρα άλλα είναι εξαιρετικά ευαίσθητα. Είναι τα πιο ευαίσθητα μαγνητόμετρα που υπάρχουν και μπορούν να εντοπίσουν πολύ πιο μικρές αλλαγές στο μαγνητικό πεδίο σε σχέση με άλλα μαγνητόμετρα.

Τα μαγνητόμετρα στις ενάλιες έρευνες σύρονται συνήθως πίσω από το σκάφος σε αρκετή απόσταση για να αποφεύγουν τυχόν μαγνητικές ανωμαλίες, από τη λειτουργία του σκάφους.

154 https://bizfluent.com/about-5397128-magnetometer.html
8.2.7. Κατευθυνόμενο βαθυσκάφος - Remotely Operated Vehicles (ROVs):

Το ROV είναι ένα υποβρύχιο ρομπότ το οποίο επιτρέπει στον χειριστή του να βρίσκεται σε ένα άνετο και ασφαλές περιβάλλον, ενώ αυτό βρίσκεται σε επικίνδυνο περιβάλλον κάτω από το νερό άλλα και τον πάγο. Όλο το σύστημα του ROV αποτελείται από το όχημα το οποίο είναι συνδεδεμένο με το σκάφος και τους χειριστές στην επιφάνεια με ένα καλώδιο επικοινωνίας, για τη λήψη εντολών και τη μεταφορά πληροφοριών. Σε πολλές περιπτώσεις το καλώδιο της τροφοδοσίας έχει περισσότερη αντοχή για να επιτρέπει την ανάκτηση βαριών αντικειμένων ή ερειπίων.

Τα ROV ποικίλουν σε μέγεθος και ικανότητες και διαθέτουν τηλεόραση, βιντεοκάμερες, εργαλεία και άλλο εξοπλισμό. Σήμερα, η τεχνολογία επέτρεψε τον ασύρματο χειρισμό τους και τα νέα συστήματα που λειτουργούν με μπαταρία ανομάζονται αυτόνομα υποβρύχια όχηματα.

Τα ROV κυμαίνονται σε μέγεθος από ένα μικρό κουτί μέχρι και ένα μεγάλο φορτηγό. Οι λειτουργίες που εκτελούν ποικίλουν από το να κουβαλούν απλά μια κάμερα για να παρατηρούν τον βυθό μέχρι να διαθέτουν πολλαπλά ευκίνητα όπλα για διάφορες λειτουργίες υποθαλάσσια.

☐ Small Electric Vehicles: χρησιμοποιούνται κυρίως για υποθαλάσσια παρατήρηση, διαθέτουν μια κάμερα και είναι αναπτυγμένα σε βάθος μέχρι 984 πόδια (300m).

☐ High Capability Electric ROVs: μεγαλύτερα σε μέγεθος και ικανά να φτάσουν μέχρι και τα 20.000 πόδια (6.096 m. Είναι εξοπλισμένα μόνο με βιντεοκάμερες και δεν μπορούν να εκτελέσουν

155 Δρ. Κυριακού 2010, 60.
156 Δρ. Κυριακού 2010, 61.
οποιεσδήποτε άλλες εργασίες επειδή η παροχή ρεύματος τα περιορίζει. Χρησιμοποιούνται από επιστήμονες και το στρατό.

Work Class Vehicle: είναι ικανά για πio σοβαρή υποθαλάσσια δουλειά, αν και η ικανότητα μεταφοράς φορτίου είναι περιορισμένη, διαθέτουν «χειριστήρια» με 7 λειτουργίες και «αρπαγής» με 5 λειτουργίες και χρησιμοποιούνται συνήθως από το τομέα γεωτρήσεων.

Heavy Work Class Vehicle ROV: είναι η εκδοχή με τα περισσότερα προτερήματα. Είναι ικανά να δουλεύουν σε βάθη μέχρι 10.000 πόδια (3.000 m). Το όνομα που τους έχει δοθεί είναι το κατάλληλότερα αφού είναι περήφανα για τη δύναμη που έχουν, η οποία κυμαίνεται από 100 μέχρι 250 ίππους και έχουν δυνατότητα συλλογής φορτίου μέχρι και 11.025 pounds. Επιπλέον, οι τύποι ROV κατέχουν πολλαπλούς «παραπλανητές» (manipulators) και «αρπαγείς» (grabbers) ικανούς για να εκτελούν υποθαλάσσια δεσίματα και εφαρμογές σε βαθιά νερά.

Autonomous Underwater Vehicles (AUVs): είναι το επόμενο βήμα στην τεχνολογία των ROV και δεν είναι ακόμη διαθέσιμα στην αγορά.

Η επόμενη τεχνολογία πιθανά θα είναι ένα υβριδικό μεταξύ AUV και ROV, με λιγότερα και λιγότερα καλώδια που να συνδέουν το όχημα με το χειριστή της προσπάθειάς μας και ακριβή αποτελέσματα.

8.3. Μεθοδολογία εντοπισμού ενάλιων αρχαιοτήτων

Από τη διεθνή βιβλιογραφία φαίνεται να διαμορφώνεται μια μεθοδολογία που πρέπει να ακολουθείται στα διάφορα στάδια της ενάλιας έρευνας, ώστε η προσπάθεια των ερευνητών να οδηγείται σε σαφή και ακριβή αποτελέσματα.

Οι έρευνες αυτές δεν γίνονται μόνο σε περιοχές ναυαγίων, βυθισμένων λιμενικών εγκαταστάσεων ή πολεμικών αεροσκαφών, αλλά και σε περιοχές με εναίσθητες βιοκοινότητες κοραλλιών ή και άλλων θαλάσσιων οργανισμών, καθώς και σε σημεία αρχαιολογικού ενδιαφέροντος και ως εκ τούτου θα πρέπει η επιλογή της μεθόδου μας να διατηρεί την μη καταστροφική χαρακτήρα της προσπάθειάς μας. Η διαδικασία για τον

157 Κυριάκος 2010, 62.
158 Κυριάκος 2010, 61-62.
εντοπισμό ενάλιων αρχαιοτήτων χωρίζεται σε δύο φάσεις: α) τη γεωφυσική διασκόπηση και β) την οπτική παρατήρηση.

Στη Α φάση οι ερευνητές θα χρησιμοποιήσουν κάποια από τα προαναφερθέντα όργανα (όπως βυθόμετρο, δορυφορικό σύστημα προσδιορισμού θέσης, τομογράφο υποδομής πυθμένα, μαγνητόμετρο και ηχοβολιστή πλευρικής σάρωσης) και στη Β φάση το κατευθυνόμενο βαθυσκάφος, αλλά και την οπτική παρατήρηση των δυτών 159.

159 Κυριακού 2010, 68.
ΣΥΜΠΕΡΑΣΜΑΤΙΚΑ ΣΧΟΛΙΑ

Οι μέθοδοι γεωφυσικής διασκόπησης του υπεδάφους, εκτός των γεωλογικών-γεωτεχνικών μελετών, εφαρμόζονται και στην εξερεύνηση των αρχαιολογικών χώρων με πρωταρχικό σκοπό τον εντοπισμό και τη χαρτογράφηση θαμμένων αρχαιοτήτων.

Προς αυτή την κατεύθυνση έχουν αναπτυχθεί ιδιαίτερες τεχνικές συλλογής, επεξεργασίας και ερμηνείας των γεωφυσικών δεδομένων και έχουν αναπτυχθεί μέθοδοι απεικόνισης του υπεδάφους, οι οποίες σε ορισμένες περιπτώσεις παράγουν εντυπωσιακά αποτελέσματα.

Οι γεωφυσικές μέθοδοι συνεπικουρούν την αρχαιολογική έρευνα προσφέροντας συνήθως εικόνα των θαμμένων αρχαίων αρχιτεκτονικών λειψάνων ή των θαμμένων κατασκευών σε μια περιοχή. Συνεπώς τα αποτελέσματά τους οδηγούν στην πληρέστερη σχεδίαση των ανασκαφών, στη συμπλήρωση των ανασκαφικών δεδομένων και στην επιτάχυνση της έρευνας, δεδομένου ότι η αρχαιολογική σκαπάνη μπορεί να κατευθυνθεί επιλεκτικά στις τοποθεσίες με το μεγαλύτερο ενδιαφέρον, προς επιβεβαίωση και των γεωφυσικών ενδείξεων και στη συνέχεια να επεκταθεί σε ολόκληρη τη περιοχή έρευνας.

Βασική αρχή στην οποία στηρίζεται η χρησιμότητα των γεωφυσικών μεθόδων είναι ότι «οι φυσικές ή ανθρωπογενείς ανομοιογένειες μέσα στο υπέδαφος προκαλούν ανωμαλίες σε φυσικά ή τεχνητά πεδία. Επομένως η καταγραφή των πεδίων οδηγεί στην ανίχνευση των υπεδαφικών ανωμαλιών και στον εντοπισμό της θέσης των ανομοιογενειών που τις προκάλεσαν. Στη συνέχεια, η μελέτη της μορφής και της έντασης των γεωφυσικών ενδείξεων οδηγεί σε συμπεράσματα για τα χαρακτηριστικά των ανομοιογενειών (μορφή, βάθος ταφής, διαφορά τιμής φυσικών ιδιοτήτων με το περιβάλλον) και στην κατασκευή 2-D ή 3-D προσομοιώσεων αυτών των υπεδαφικών δομών.

Γενικά, η εφαρμογή των γεωφυσικών μεθόδων διασκόπησης καθιστά δυνατή τη διερεύνηση μεγάλων εκτάσεων, σε σύντομο χρονικό διάστημα και με μικρό σχετικά κόστος.

Οι μέθοδοι όμως αυτές μπορούν να εφαρμοστούν τόσο για την αντιμετώπιση εξαιδικευμένων θεμάτων της αρχαιολογικής έρευνας, όπως ο εντοπισμός ταφικών μνημείων ή άλλων κατασκευών που καλύπτονται από την τεχνητή ρόδα, ο εντοπισμός κρυπτών ή τάφων μέσα σε μνημεία, ο εντοπισμός αρχαίων λειψάνων που υπόκεινται νεώτερων αρχαιοτήτων, κ.ο.κ., όσο και για την επίλυση προβλημάτων που αφορούν κινδύνους που απειλούν την αρχαιολογική κληρονομιά, όπως η μελέτη των συνθηκών έδρασης των μνημείων, καθορισμός της υπόγειας ροής υδάτων που διαπερνούν αρχαιολογικούς χώρους, εντοπισμός τροχαίων εκτάσεων, παρακολούθηση της ανόδου υγρασίας σε τοιχοποιίες, κ.α..
1) Αχιλλεόπουλος Πέτρος (1986): «Βαθυμετρική και ιζηματολογική έρευνα στο Δίαυλο Λευκάδας». Διπλωματική εργασία. Μεταπτυχιακό Ωκεανογραφίας Ε.Κ.Π.Α.
5) Γεωγραφική Υπηρεσία Στρατού (Γ.Υ.Σ.), 2015. Διαθέσιμο στο: http://www.gys.gr
6) Γιαννόπουλος Αλέξανδρος - Παναγιώτης (2014): «Εφαρμογή Γεωφυσικών μεθόδων για την ανάδειξη αρχαιολογικών ευρημάτων στο Αμφιάρειο Ωρωπού». Διπλωματική Εργασία - Τμήματα μηχ.Μεταλλείων – Μεταλλουργών και Πολιτικών Μηχανικών, ΕΜΠ.
9) Κωστίνης Αθ. Ευάγγελος (2011): «Εντοπισμός και χωρική αποτίμηση μεταλλοφόρων ζωνών με τη χρήση γεωφυσικών μεθόδων». Διπλωματική εργασία. Τμήμα τεχνολογίας πετρελαίου και φυσικού αερίου. ΤΕΙ Καβάλας.
13) Μπαντέκας, Ι., 1980. Φωτογραμμετρία, τόμος Ι. 2η έκδ., Αθήνα: Γραφικά Τέχναι «ΑΤΤΙΚΑ».
15) Παρχαρίδης Ισιάκ (2015) Αρχές δορυφορικής Τηλεπισκόπησης. Θεωρία και εφαρμογές. Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών, Εθνικό Μετσόβιο Πολυτεχνείο.
16) Παπαζάχος Κ. & Παπαζάχος Β. (2008): Εισαγωγή στη Γεωφυσική. 2η έκδοση, Εκδόσεις ΖΗΤΗ.

19) Σηφουνάκη Σ.Μ. (2011), Συγκριτική διερεύνηση της ταξινόμησης της βραχομάζας με ηλεκτρικές και ακουστικές μεθόδους, Διδακτορική διατριβή, Θεσσαλονίκη.

20) Τσόκας Γρηγόριος, Βαργεμέζης Γεώργιος, Σταμπολίδης Αλέξανδρος, Τάσσης Γεώργιος & Καραούλης Μάριος (2004): «Γωφυσική διασκόπηση του νεολιθικού οικισμού της Αυγής στο νομό Καστοριάς». Εργαστήριο Εφαρμοσμένης Τμήματος Γεωλογίας ΑΠΘ (ερευνητικό πρόγραμμα).

Σενόγλωσση Βιβλιογραφία

34) Bowens, Amanda (2009), Underwater Archaeology: The NAS Guide to Principles and Practice, Nautical Archaeological Society, US.

41) Dellino-Musgrave Virginia (2006), Maritime Archaeology and Social Relations, Springer USA

54) Linington R.E. (1966), Test use of gravimeter on Etruscan chamber tombs at cerveteri, Prospezioni Archeologiche, I.
61) Musgrove M., Nikon Says It's Leaving Film-Camera Business, Washington Post Staff Writer Thursday, January 12, 2006

73) Verhoeven Geert and Vermeulen Frank (2016), Engaging with the Canopy—Multi-Dimensional Vegetation Mark Visualisation Using Archived Aerial Images, 1 LBI for Archaeological Prospection & Virtual Archaeology (LBI ArchPro), Franz-Klein-Gasse 1, A-1190Wien, Austria, 8, p.1-16.

74) Vaughan C.J. 1986, Ground penetrating radar surveys used in archaeological investigations-Geophysics, 51.

Ηλεκτρονική Βιβλιογραφία

79) Μωυσιάδης Κ. Αθανάσιος: Κεφάλαιο 2: Στοιχεία Φωτογραμμετρίας – Φωτοερμηνείας https://repository.kallipos.gr/bitstream/11419/1842/1/03_chapter_2.pdf

82) Τσόκας Ν. Γρ. & Τσόκας Ι. Παν. (2017): «Εντοπισμός και χαρτογράφηση θαμμένων αρχαίων με γεωφυσικές μεθόδους». http://clioturbata.com/%CE%B1%CF%80%CF%8C%CF%88%CE%B5%CE%B9%CF%82 /tsokas-tourlos-geologyandarchaeology/

83) https://bizfluent.com/about-5397128-magnetometer.html

84) http://emeric.ims.forth.gr/
86) http://www.wessexarch.co.uk/projects/marine/alsf/wrecks_seabed/magnetometer.html
87) http://www.nareva.info/ssn_sonar/detection.htm
88) http://www.protothema.gr/culture/article/636615/arhaiologoi-anakalupsan-hameni-arhaiapo-lipi-stin-thessalia/
90) http://yiorgosthalassis.blogspot.com/2012/09/blog-post_871.html
91) http://www.archaiologia.gr/blog/2017/01/10
92) http://hellenes-romaion.blogspot.gr/2015/12/blog-post_23.html
93) http://news.in.gr/culture/article/?aid=1500041743
94) https://repository.kallipos.gr/bitstream/11419/6172/2/01_chapter_4.pdf